
Perl 6 Introduction
Naoum Hankache

Table of Contents
1. Introduction. 2

1.1. What is Perl 6. 2

1.2. Jargon . 2

1.3. Installing Perl 6 . 2

1.4. Running Perl 6 code . 3

1.5. Editors . 3

1.6. Hello World! . 4

1.7. Syntax overview . 4

2. Operators . 7

2.1. Common Operators . 7

2.2. Reversed Operators . 9

2.3. Reduction Operators . 9

3. Variables. 11

3.1. Scalars . 11

3.2. Arrays . 12

3.3. Hashes . 14

3.4. Types . 15

3.5. Introspection . 17

3.6. Scoping . 17

3.7. Assignment vs. Binding . 18

4. Functions and mutators . 20

5. Loops and conditions . 21

5.1. if . 21

5.2. unless. 21

5.3. with . 22

5.4. for . 23

5.5. given . 23

5.6. loop . 23

6. I/O. 25

6.1. Basic I/O using the Terminal . 25

6.2. Running Shell Commands . 26

6.3. File I/O . 26

6.4. Working with files and directories. 27

7. Subroutines . 29

7.1. Definition . 29

7.2. Signature. 29

7.3. Multiple dispatch . 29

7.4. Default and Optional Parameters . 30

7.5. Returning values. 30

8. Functional Programming . 33

8.1. Functions are first-class citizens. 33

8.2. Anonymous functions . 33

8.3. Chaining . 34

8.4. Feed Operator . 34

8.5. Hyper operator . 35

8.6. Junctions . 36

8.7. Lazy Lists . 36

8.8. Closures. 37

9. Classes & Objects . 39

9.1. Introduction. 39

9.2. Encapsulation . 40

9.3. Named vs. Positional Parameters . 41

9.4. Methods. 42

9.5. Class Attributes . 43

9.6. Access Type . 44

9.7. Inheritance. 44

9.8. Multiple Inheritance . 47

9.9. Roles. 49

9.10. Introspection . 51

10. Exception Handling . 53

10.1. Catching Exceptions. 53

10.2. Throwing Exceptions. 55

11. Regular Expressions . 56

11.1. Regex definition . 56

11.2. Matching characters . 56

11.3. Matching categories of characters . 57

11.4. Unicode properties. 57

11.5. Wildcards . 58

11.6. Quantifiers . 58

11.7. Match Results . 60

11.8. Example . 61

12. Perl 6 Modules . 63

12.1. Using Modules . 63

13. Unicode. 64

13.1. Using Unicode . 64

13.2. Unicode-aware Operations . 65

14. Parallelism, Concurrency and Asynchrony . 67

14.1. Parallelism . 67

14.2. Concurrency and Asynchrony. 69

15. Native Calling Interface . 70

15.1. Calling a function . 70

15.2. Renaming a function . 71

15.3. Passing Arguments. 71

15.4. Returning values. 72

15.5. Types . 72

16. The Community . 74

This document is intended to give you a quick overview of the Perl 6
programming language. For those new to Perl 6, it should get you up and
running.

Some sections of this document refer to other (more complete and accurate) parts of the Perl 6
documentation. You should read them if you need more information on a specific subject.

Throughout this document, you will find examples for most discussed topics. To better understand
them, take the time to reproduce all examples.

License

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License. To view a copy of this license, visit

• https://creativecommons.org/licenses/by-sa/4.0/.

Contribution

If you would like to contribute to this document, head over to:

• https://github.com/hankache/perl6intro

Feedback

All feedback is welcomed: naoum@hankache.com

If you liked this work, Star the repository on Github.

Translations

• Bulgarian: https://perl6intro.com/bg

• Chinese: https://perl6intro.com/zh

• Dutch: https://perl6intro.com/nl

• French: https://perl6intro.com/fr

• German: https://perl6intro.com/de

• Indonesian: https://perl6intro.com/id

• Italian https://perl6intro.com/it

• Japanese: https://perl6intro.com/ja

• Portuguese: https://perl6intro.com/pt

• Spanish: https://perl6intro.com/es

• Turkish: https://perl6intro.com/tr

• Russian: https://perl6intro.com/ru

1

http://docs.perl6.org
http://docs.perl6.org
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/hankache/perl6intro
mailto:naoum@hankache.com
https://github.com/hankache/perl6intro
https://perl6intro.com/bg
https://perl6intro.com/zh
https://perl6intro.com/nl
https://perl6intro.com/fr
https://perl6intro.com/de
https://perl6intro.com/id
https://perl6intro.com/it
https://perl6intro.com/ja
https://perl6intro.com/pt
https://perl6intro.com/es
https://perl6intro.com/tr
https://perl6intro.com/ru

Chapter 1. Introduction

1.1. What is Perl 6
Perl 6 is a high-level, general-purpose, gradually typed language. Perl 6 is multi-paradigmatic. It
supports Procedural, Object Oriented, and Functional programming.

Perl 6 motto:

• TMTOWTDI (Pronounced Tim Toady): There is more than one way to do it.

• Easy things should stay easy, hard things should get easier, and impossible things should get
hard.

1.2. Jargon
• Perl 6: Is a language specification with a test suite. Implementations that pass the specification

test suite are considered Perl 6.

• Rakudo: Is a compiler for Perl 6.

• Rakudobrew: Is an installation manager for Rakudo.

• Zef: Is a Perl 6 module installer.

• Rakudo Star: Is a bundle that includes Rakudo, Zef, a collection of Perl 6 modules, and
documentation.

1.3. Installing Perl 6
Linux

To install Rakudo Star, run the following commands from your terminal:

wget https://rakudo.perl6.org/downloads/star/rakudo-star-2019.03.tar.gz
tar xfz rakudo-star-2019.03.tar.gz
cd rakudo-star-2019.03
perl Configure.pl --gen-moar --make-install --prefix ~/rakudo

For other options, go to http://rakudo.org/how-to-get-rakudo/#Installing-Rakudo-Star-Linux

macOS

Four options are available:

• Follow the same steps listed for installing on Linux

• Install with homebrew: brew install rakudo-star

• Install with MacPorts: sudo port install rakudo

• Get the latest installer (file with .dmg extension) from https://rakudo.org/latest/star/macos

Windows

2

http://rakudo.org/how-to-get-rakudo/#Installing-Rakudo-Star-Linux
https://rakudo.org/latest/star/macos

1. For 64-bit architectures: Get the latest installer (file with .msi extension) from
https://rakudo.org/latest/star/win64
For 32-bit architectures: Get the latest installer (file with .msi extension) from
https://rakudo.org/latest/star/win32

2. After installation, make sure C:\rakudo\bin is in the PATH

Docker

1. Get the official Docker image docker pull rakudo-star

2. Then run a container with the image docker run -it rakudo-star

1.4. Running Perl 6 code
Running Perl 6 code can be done using the REPL (Read-Eval-Print Loop). To do this, open a terminal,
type perl6 into the terminal window, and hit [Enter]. This will cause a prompt of > to appear. Next,
type a line of code and hit [Enter]. The REPL will print out the value of the line. You may then type
another line, or type exit and hit [Enter] to leave the REPL.

Alternatively, write your code in a file, save it and run it. It is recommended that Perl 6 scripts have
a .p6 file name extension. Run the file by typing perl6 filename.p6 into the terminal window and
hitting [Enter]. Unlike the REPL, this will not automatically print the result of each line: the code
must contain a statement like say to print output.

The REPL is mostly used for trying a specific piece of code, typically a single line. For programs with
more than a single line it is recommended to store them in a file and then run them.

Single lines may also be tried non-interactively on the command-line by typing perl6 -e 'your code
here' and hitting [Enter].

Rakudo Star bundles a line editor that helps you get the most out of the REPL.

If you installed plain Rakudo instead of Rakudo Star then you probably don’t have
line editing features enabled (using the up and down arrows for history, left and
right to edit input, TAB completion). Consider running the following command and
you shall be all set:

• zef install Linenoise would work on Windows, Linux and macOS

• zef install Readline if you are on Linux and prefer the Readline library

1.5. Editors
Since most of the time we will be writing and storing our Perl 6 programs in files, we should have a
decent text editor that recognizes Perl 6 syntax.

I personally use and recommend Atom. It is a modern text editor and comes with Perl 6 syntax
highlighting out of the box. Perl 6 FE is an alternative Perl 6 syntax highlighter for Atom, derived
from the original package but with many bug fixes and additions.

3

https://rakudo.org/latest/star/win64
https://rakudo.org/latest/star/win32
https://atom.io/
https://atom.io/packages/language-perl6

Other people in the community also use Vim, Emacs or Padre.

Recent versions of Vim ship with syntax highlighting out of the box. Emacs and Padre will require
installation of additional packages.

1.6. Hello World!
We shall begin with The hello world ritual.

say 'hello world';

that can also be written as:

'hello world'.say;

1.7. Syntax overview
Perl 6 is free form: Most of the time you are free to use any amount of whitespace, although in
certain cases whitespace carries meaning.

Statements are typically a logical line of code, they need to end with a semicolon: say "Hello" if
True;

Expressions are a special type of statement that returns a value: 1+2 will return 3

Expressions are made of Terms and Operators.

Terms are:

• Variables: A value that can be manipulated and changed.

• Literals: A constant value like a number or a string.

Operators are classified into types:

Type Explanation Example

Prefix Before the term. ++1

Infix Between terms 1+2

Postfix After the term 1++

Circumfix Around the term (1)

Postcircumfix After one term, around another Array[1]

1.7.1. Identifiers

Identifiers are the names given to terms when you define them.

Rules:

4

http://www.vim.org/
https://www.gnu.org/software/emacs/
http://padre.perlide.org/

• They must start with an alphabetic character or an underscore.

• They can contain digits (except the first character).

• They can contain dashes or apostrophes (except the first and last character), provided there’s an
alphabetic character to the right side of each dash or apostrophe.

Valid Invalid

var1 1var

var-one var-1

var’one var'1

var1_ var1'

_var -var

Naming conventions:

• Camel case: variableNo1

• Kebab case: variable-no1

• Snake case: variable_no1

You are free to name your identifiers as you like, but it is good practice to adopt one naming
convention consistently.

Using meaningful names will ease your (and other’s) programming life.

• var1 = var2 * var3 is syntactically correct but its purpose is not evident.

• monthly-salary = daily-rate * working-days would be a better way to name your variables.

1.7.2. Comments

A comment is text ignored by the compiler and used as a note.

Comments are divided into 3 types:

• Single line:

This is a single line comment

• Embedded:

say #`(This is an embedded comment) "Hello World."

• Multi line:

5

=begin comment
This is a multi line comment.
Comment 1
Comment 2
=end comment

1.7.3. Quotes

Strings need to be delimited by either double quotes or single quotes.

Always use double quotes:

• if your string contains an apostrophe.

• if your string contains a variable that needs to be interpolated.

say 'Hello World'; # Hello World
say "Hello World"; # Hello World
say "Don't"; # Don't
my $name = 'John Doe';
say 'Hello $name'; # Hello $name
say "Hello $name"; # Hello John Doe

6

Chapter 2. Operators

2.1. Common Operators
The below table lists the most commonly used operators.

Oper
ator

Type Description Example Result

+ Infix Addition 1 + 2 3

- Infix Subtraction 3 - 1 2

* Infix Multiplication 3 * 2 6

** Infix Power 3 ** 2 9

/ Infix Division 3 / 2 1.5

div Infix
Integer Division (rounds
down)

3 div 2 1

% Infix Modulo 7 % 4 3

%% Infix Divisibility
6 %% 4 False

6 %% 3 True

gcd Infix Greatest common divisor 6 gcd 9 3

lcm Infix Least common multiple 6 lcm 9 18

== Infix Numeric equal 9 == 7 False

!= Infix Numeric not equal 9 != 7 True

< Infix Numeric less than 9 < 7 False

> Infix Numeric greater than 9 > 7 True

<= Infix Numeric less than or equal 7 <= 7 True

>= Infix
Numeric greater than or
equal

9 >= 7 True

<=> Infix
Numeric three-way
comparator

1 <=> 1.0 Same

1 <=> 2 Less

3 <=> 2 More

eq Infix String equal "John" eq "John" True

ne Infix String not equal "John" ne "Jane" True

lt Infix String less than "a" lt "b" True

gt Infix String greater than "a" gt "b" False

le Infix String less than or equal "a" le "a" True

ge Infix
String greater than or
equal

"a" ge "b" False

leg Infix
String three-way
comparator

"a" leg "a" Same

"a" leg "b" Less

"c" leg "b" More

7

Oper
ator

Type Description Example Result

cmp Infix
Smart three-way
comparator

"a" cmp "b" Less

3.5 cmp 2.6 More

= Infix Assignment my $var = 7
Assigns the value of 7 to
the variable $var

~ Infix String concatenation
9 ~ 7 97

"Hi " ~ "there" Hi there

x Infix String replication
13 x 3 131313

"Hello " x 3 Hello Hello Hello

~~ Infix Smart match

2 ~~ 2 True

2 ~~ Int True

"Perl 6" ~~ "Perl 6" True

"Perl 6" ~~ Str True

"enlightenment" ~~ /light/ ｢light｣

++

Prefi
x Increment my $var = 2; ++$var; Increment the variable by

1 and return the result 3

Postf
ix Increment my $var = 2; $var++; Return the variable 2 and

then increment it

--

Prefi
x Decrement my $var = 2; --$var; Decrement the variable by

1 and return the result 1

Postf
ix Decrement my $var = 2; $var--; Return the variable 2 and

then decrement it

+ Prefi
x

Coerce the operand to a
numeric value

+"3" 3

+True 1

+False 0

- Prefi
x

Coerce the operand to a
numeric value and return
the negation

-"3" -3

-True -1

-False 0

?
Prefi
x

Coerce the operand to a
boolean value

?0 False

?9.8 True

?"Hello" True

?"" False

my $var; ?$var; False

my $var = 7; ?$var; True

! Prefi
x

Coerce the operand to a
boolean value and return
the negation

!4 False

.. Infix Range Constructor 0..5

Creates a range of the
interval [0, 5] [1:
Notations for intervals:
https://en.wikipedia.org/
wiki/
Interval_(mathematics)#
Notations_for_intervals]

8

https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals

Oper
ator

Type Description Example Result

..^ Infix Range Constructor 0..^5

Creates a range of the
interval [0, 5) [1:
Notations for intervals:
https://en.wikipedia.org/
wiki/
Interval_(mathematics)#
Notations_for_intervals]

^.. Infix Range Constructor 0^..5

Creates a range of the
interval (0, 5] [1:
Notations for intervals:
https://en.wikipedia.org/
wiki/
Interval_(mathematics)#
Notations_for_intervals]

^..^ Infix Range Constructor 0^..^5

Creates a range of the
interval (0, 5) [1:
Notations for intervals:
https://en.wikipedia.org/
wiki/
Interval_(mathematics)#
Notations_for_intervals]

^ Prefi
x Range Constructor ^5

Same as 0..^5 Creates a
range of the interval [0,
5) [1: Notations for
intervals:
https://en.wikipedia.org/
wiki/
Interval_(mathematics)#
Notations_for_intervals]

… Infix Lazy List Constructor 0…9999 return the elements only
if requested

| Prefi
x Flattening

|(0..5) (0 1 2 3 4 5)

|(0^..^5) (1 2 3 4)

2.2. Reversed Operators
Adding R before any operator will have the effect of reversing its operands.

Normal Operation Result Reversed Operator Result

2 / 3 0.666667 2 R/ 3 1.5

2 - 1 1 2 R- 1 -1

2.3. Reduction Operators
Reduction operators work on lists of values. They are formed by surrounding the operator with
brackets []

Normal Operation Result Reduction Operator Result

1 + 2 + 3 + 4 + 5 15 [+] 1,2,3,4,5 15

1 * 2 * 3 * 4 * 5 120 [*] 1,2,3,4,5 120

9

https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals
https://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals

For the complete list of operators, including their precedence, go to
https://docs.perl6.org/language/operators

10

https://docs.perl6.org/language/operators

Chapter 3. Variables
Perl 6 variables are classified into 3 categories: Scalars, Arrays and Hashes.

A sigil (Sign in Latin) is a character that is used as a prefix to categorize variables.

• $ is used for scalars

• @ is used for arrays

• % is used for hashes

3.1. Scalars
A scalar holds one value or reference.

String
my $name = 'John Doe';
say $name;

Integer
my $age = 99;
say $age;

A specific set of operations can be performed on a scalar, depending on the value it holds.

String

my $name = 'John Doe';
say $name.uc;
say $name.chars;
say $name.flip;

JOHN DOE
8
eoD nhoJ

For the complete list of methods applicable to Strings, see https://docs.perl6.org/
type/Str

Integer

my $age = 17;
say $age.is-prime;

11

https://docs.perl6.org/type/Str
https://docs.perl6.org/type/Str

True

For the complete list of methods applicable to Integers, see https://docs.perl6.org/
type/Int

Rational Number

my $age = 2.3;
say $age.numerator;
say $age.denominator;
say $age.nude;

23
10
(23 10)

For the complete list of methods applicable to Rational Numbers, see
https://docs.perl6.org/type/Rat

3.2. Arrays
Arrays are lists containing multiple values.

my @animals = 'camel','llama','owl';
say @animals;

Many operations can be performed on arrays as shown in the below example:

 The tilde ~ is used for string concatenation.

Script

my @animals = 'camel','vicuña','llama';
say "The zoo contains " ~ @animals.elems ~ " animals";
say "The animals are: " ~ @animals;
say "I will adopt an owl for the zoo";
@animals.push("owl");
say "Now my zoo has: " ~ @animals;
say "The first animal we adopted was the " ~ @animals[0];
@animals.pop;
say "Unfortunately the owl got away and we're left with: " ~ @animals;
say "We're closing the zoo and keeping one animal only";
say "We're going to let go: " ~ @animals.splice(1,2) ~ " and keep the " ~ @animals;

12

https://docs.perl6.org/type/Int
https://docs.perl6.org/type/Int
https://docs.perl6.org/type/Rat

Output

The zoo contains 3 animals
The animals are: camel vicuña llama
I will adopt an owl for the zoo
Now my zoo has: camel vicuña llama owl
The first animal we adopted was the camel
Unfortunately the owl got away and we're left with: camel vicuña llama
We're closing the zoo and keeping one animal only
We're going to let go: vicuña llama and keep the camel

Explanation

.elems returns the number of elements in an array.

.push() adds one or more elements to the array.
We can access a specific element in the array by specifying its position @animals[0].
.pop removes the last element from the array and returns it.
.splice(a,b) will remove b elements starting at position a.

3.2.1. Fixed-size arrays

A basic array is declared as following:

my @array;

The basic array can have indefinite length and thus is called auto-extending.
The array will accept any number of values with no restriction.

In contrast, we can also create fixed-size arrays.
These arrays cannot be accessed beyond their defined size.

To declare an array of fixed size, specify its maximum number of elements in square brackets
immediately after its name:

my @array[3];

This array will be able to hold a maximum of 3 values, indexed from 0 to 2.

my @array[3];
@array[0] = "first value";
@array[1] = "second value";
@array[2] = "third value";

You will not be able to add a fourth value to this array:

13

my @array[3];
@array[0] = "first value";
@array[1] = "second value";
@array[2] = "third value";
@array[3] = "fourth value";

Index 3 for dimension 1 out of range (must be 0..2)

3.2.2. Multidimensional arrays

The arrays we saw until now are one-dimensional.
Fortunately, we can define multi-dimensional arrays in Perl 6.

my @tbl[3;2];

This array is two-dimensional. The first dimension can have a maximum of 3 values and the second
dimension a maximum of 2 values.

Think of it as a 3x2 grid.

my @tbl[3;2];
@tbl[0;0] = 1;
@tbl[0;1] = "x";
@tbl[1;0] = 2;
@tbl[1;1] = "y";
@tbl[2;0] = 3;
@tbl[2;1] = "z";
say @tbl

[[1 x] [2 y] [3 z]]

Visual representation of the array:

[1 x]
[2 y]
[3 z]

 For the complete Array reference, see https://docs.perl6.org/type/Array

3.3. Hashes

14

https://docs.perl6.org/type/Array

A Hash is a set of Key/Value pairs.

my %capitals = ('UK','London','Germany','Berlin');
say %capitals;

Another succinct way of filling the hash:

my %capitals = (UK => 'London', Germany => 'Berlin');
say %capitals;

Some of the methods that can be called on hashes are:

Script

my %capitals = (UK => 'London', Germany => 'Berlin');
%capitals.push: (France => 'Paris');
say %capitals.kv;
say %capitals.keys;
say %capitals.values;
say "The capital of France is: " ~ %capitals<France>;

Output

(France Paris Germany Berlin UK London)
(France Germany UK)
(Paris Berlin London)
The capital of France is: Paris

Explanation

.push: (key ⇒ 'Value') adds a new key/value pair.

.kv returns a list containing all keys and values.

.keys returns a list that contains all keys.

.values returns a list that contains all values.
We can access a specific value in the hash by specifying its key %hash<key>

 For the complete Hash reference, see https://docs.perl6.org/type/Hash

3.4. Types
In the previous examples, we did not specify what type of values the variables should hold.

 .WHAT will return the type of value held in a variable.

15

https://docs.perl6.org/type/Hash

my $var = 'Text';
say $var;
say $var.WHAT;

$var = 123;
say $var;
say $var.WHAT;

As you can see in the above example, the type of value in $var was once (Str) and then (Int).

This style of programming is called dynamic typing. Dynamic in the sense that variables may
contain values of Any type.

Now try running the below example:
Notice Int before the variable name.

my Int $var = 'Text';
say $var;
say $var.WHAT;

It will fail and return this error message: Type check failed in assignment to $var; expected Int
but got Str

What happened is that we specified beforehand that the variable should be of type (Int). When we
tried to assign an (Str) to it, it failed.

This style of programming is called static typing. Static in the sense that variable types are defined
before assignment and cannot change.

Perl 6 is classified as gradually typed; it allows both static and dynamic typing.

Arrays and hashes can also be statically typed:

my Int @array = 1,2,3;
say @array;
say @array.WHAT;

my Str @multilingual = "Hello","Salut","Hallo","您好","안녕하세요","こんにちは";
say @multilingual;
say @multilingual.WHAT;

my Str %capitals = (UK => 'London', Germany => 'Berlin');
say %capitals;
say %capitals.WHAT;

my Int %country-codes = (UK => 44, Germany => 49);
say %country-codes;
say %country-codes.WHAT;

16

Below is a list of the most commonly used types:

You will most probably never use the first two but they are listed for informational purpose.

Type Description Example Result

Mu The root of the Perl 6 type hierarchy

Any
Default base class for new classes and
for most built-in classes

Cool Value that can be treated as a string
or number interchangeably

my Cool $var = 31; say
$var.flip; say $var * 2;

13 62

Str String of characters my Str $var = "NEON"; say
$var.flip;

NOEN

Int Integer (arbitrary-precision) 7 + 7 14

Rat Rational number (limited-precision) 0.1 + 0.2 0.3

Bool Boolean !True False

3.5. Introspection
Introspection is the process of getting information about an object properties like its type.
In one of the previous example we used .WHAT to return the type of the variable.

my Int $var;
say $var.WHAT; # (Int)
my $var2;
say $var2.WHAT; # (Any)
$var2 = 1;
say $var2.WHAT; # (Int)
$var2 = "Hello";
say $var2.WHAT; # (Str)
$var2 = True;
say $var2.WHAT; # (Bool)
$var2 = Nil;
say $var2.WHAT; # (Any)

The type of a variable holding a value is correlated to its value.
The type of a strongly declared empty variable is the type with which it was declared.
The type of an empty variable that wasn’t strongly declared is (Any)
To clear the value of a variable, assign Nil to it.

3.6. Scoping
Before using a variable for the first time, it needs to be declared.

Several declarators are used in Perl 6. We’ve been using my, so far.

my $var=1;

17

The my declarator give the variable lexical scope. In other words, the variable will only be
accessible in the same block it was declared.

A block in Perl 6 is delimited by { }. If no block is found, the variable will be available in the whole
Perl 6 script.

{
 my Str $var = 'Text';
 say $var; # is accessible
}
say $var; # is not accessible, returns an error

Since a variable is only accessible in the block where it is defined, the same variable name can be
used in another block.

{
 my Str $var = 'Text';
 say $var;
}
my Int $var = 123;
say $var;

3.7. Assignment vs. Binding
We’ve seen in the previous examples, how to assign values to variables.
Assignment is done using the = operator.

my Int $var = 123;
say $var;

We can change the value assigned to a variable:

Assignment

my Int $var = 123;
say $var;
$var = 999;
say $var;

Output

123
999

On the other hand, we cannot change the value bound to a variable.
Binding is done using the := operator.

18

Binding

my Int $var := 123;
say $var;
$var = 999;
say $var;

Output

123
Cannot assign to an immutable value

Variables can also be bound to other variables:

my $a;
my $b;
$b := $a;
$a = 7;
say $b;
$b = 8;
say $a;

Output

7
8

Binding variables is bi-directional.
$a := $b and $b := $a have the same effect.

 For more info on variables, see https://docs.perl6.org/language/variables

19

https://docs.perl6.org/language/variables

Chapter 4. Functions and mutators
It is important to differentiate between functions and mutators.
Functions do not change the state of the object they were called on.
Mutators modify the state of the object.

Script

my @numbers = [7,2,4,9,11,3];

@numbers.push(99);
say @numbers; #1

say @numbers.sort; #2
say @numbers; #3

@numbers.=sort;
say @numbers; #4

Output

[7 2 4 9 11 3 99] #1
(2 3 4 7 9 11 99) #2
[7 2 4 9 11 3 99] #3
[2 3 4 7 9 11 99] #4

Explanation

.push is a mutator; it changes the state of the array (#1)

.sort is a function; it returns a sorted array but doesn’t modify the state of the initial array:

• (#2) shows that it returned a sorted array.

• (#3) shows that the initial array is still unmodified.

In order to enforce a function to act as a mutator, we use .= instead of . (#4) (Line 9 of the script)

20

Chapter 5. Loops and conditions
Perl 6 has many conditional and looping constructs.

5.1. if
The code runs only if a condition has been met; i.e., an expression evaluates to True.

my $age = 19;

if $age > 18 {
 say 'Welcome'
}

In Perl 6, we can invert the code and the condition.
Even if the code and the condition have been inverted, the condition is always evaluated first.

my $age = 19;

say 'Welcome' if $age > 18;

If the condition is not met, we can specify alternate blocks for execution by using:

• else

• elsif

run the same code for different values of the variable
my $number-of-seats = 9;

if $number-of-seats <= 5 {
 say 'I am a sedan'
} elsif $number-of-seats <= 7 {
 say 'I am 7 seater'
} else {
 say 'I am a van'
}

5.2. unless
The negated version of an if statement can be written using unless.

The following code:

21

my $clean-shoes = False;

if not $clean-shoes {
 say 'Clean your shoes'
}

can be written as:

my $clean-shoes = False;

unless $clean-shoes {
 say 'Clean your shoes'
}

Negation in Perl 6 is done using either ! or not.

unless (condition) is used instead of if not (condition).

unless cannot have an else clause.

5.3. with
with behaves like the if statement, but checks if the variable is defined.

my Int $var=1;

with $var {
 say 'Hello'
}

If you run the code without assigning a value to the variable, nothing should happen.

my Int $var;

with $var {
 say 'Hello'
}

without is the negated version of with. You should be able to relate it to unless.

If the first with condition is not met, an alternate path can be specified using orwith.
with and orwith can be compared to if and elsif.

22

5.4. for
The for loop iterates over multiple values.

my @array = [1,2,3];

for @array -> $array-item {
 say $array-item * 100
}

Notice that we created an iteration variable $array-item and then performed the operation *100 on
each array item.

5.5. given
given is the Perl 6 equivalent of the switch statement in other languages, but much more powerful.

my $var = 42;

given $var {
 when 0..50 { say 'Less than or equal to 50'}
 when Int { say "is an Int" }
 when 42 { say 42 }
 default { say "huh?" }
}

After a successful match, the matching process will stop.

Alternatively proceed will instruct Perl 6 to continue matching even after a successful match.

my $var = 42;

given $var {
 when 0..50 { say 'Less than or equal to 50';proceed}
 when Int { say "is an Int";proceed}
 when 42 { say 42 }
 default { say "huh?" }
}

5.6. loop
loop is another way of writing a for loop.

Actually, loop is how for loops are written in C-family programming languages.

Perl 6 belongs to the C-family languages.

23

loop (my $i = 0; $i < 5; $i++) {
 say "The current number is $i"
}

 For more info on loops and conditions, see https://docs.perl6.org/language/control

24

https://docs.perl6.org/language/control

Chapter 6. I/O
In Perl 6, two of the most common Input/Output interfaces are the Terminal and Files.

6.1. Basic I/O using the Terminal

6.1.1. say

say writes to the standard output. It appends a newline at the end. In other words, the following
code:

say 'Hello Mam.';
say 'Hello Sir.';

will be written on 2 separate lines.

6.1.2. print

print on the other hand behaves like say but doesn’t add a new line.

Try replacing say with print and compare the results.

6.1.3. get

get is used to capture input from the terminal.

my $name;

say "Hi, what's your name?";
$name = get;

say "Dear $name welcome to Perl 6";

When the above code runs, the terminal will be waiting for you to input your name. Enter it and
then hit [Enter]. Subsequently, it will greet you.

6.1.4. prompt

prompt is a combination of print and get.

The above example can be written like this:

my $name = prompt "Hi, what's your name? ";

say "Dear $name welcome to Perl 6";

25

6.2. Running Shell Commands
Two subroutines can be used to run shell commands:

• run Runs an external command without involving a shell

• shell Runs a command through the system shell. It is platform and shell dependent. All shell
meta characters are interpreted by the shell, including pipes, redirects, environment variable
substitutions and so on.

Run this if you’re on Linux/macOS

my $name = 'Neo';
run 'echo', "hello $name";
shell "ls";

Run this if you’re on Windows

shell "dir";

echo and ls are common shell keywords on Linux:
echo prints text to the terminal (the equivalent of print in Perl 6)
ls lists all files and folders in the current directory

dir is the equivalent of ls on Windows.

6.3. File I/O

6.3.1. slurp

slurp is used to read data from a file.

Create a text file with the following content:

datafile.txt

John 9
Johnnie 7
Jane 8
Joanna 7

my $data = slurp "datafile.txt";
say $data;

6.3.2. spurt

spurt is used to write data to a file.

26

my $newdata = "New scores:
Paul 10
Paulie 9
Paulo 11";

spurt "newdatafile.txt", $newdata;

After running the above code, a new file named newdatafile.txt will be created. It will contain the
new scores.

6.4. Working with files and directories
Perl 6 can list the contents of a directory without resorting to shell commands (by using ls, for
example).

say dir; # List files and folders in the current directory
say dir "/Documents"; # List files and folders in the specified directory

In addition, you can create and delete directories.

mkdir "newfolder";
rmdir "newfolder";

mkdir creates a new directory.
rmdir deletes an empty directory and returns an error if not empty.

You can also check if a path exists; if it is a file; or a directory:

In the directory where you will be running the below script, create an empty folder folder123 and
an empty p6 file script123.p6

say "script123.p6".IO.e;
say "folder123".IO.e;

say "script123.p6".IO.d;
say "folder123".IO.d;

say "script123.p6".IO.f;
say "folder123".IO.f;

IO.e checks if the directory/file exists.
IO.f checks if the path is a file.
IO.d checks if the path is a directory.

27

Windows users can use / or \\ to define directories
C:\\rakudo\\bin

C:/rakudo/bin

 For more info on I/O, see https://docs.perl6.org/type/IO

28

https://docs.perl6.org/type/IO

Chapter 7. Subroutines

7.1. Definition
Subroutines (also called subs or functions) are a means of packaging and reusing functionality.

A subroutine definition begins with the keyword sub. After their definition, they can be called by
their handle.
Check out the below example:

sub alien-greeting {
 say "Hello earthlings";
}

alien-greeting;

The previous example showcased a subroutine that doesn’t require any input.

7.2. Signature
Subroutines can require input. That input is provided by arguments. A subroutine may define zero
or more parameters. The number and type of parameters that a subroutine defines is called its
signature.

The below subroutine accepts a string argument.

sub say-hello (Str $name) {
 say "Hello " ~ $name ~ "!!!!"
}
say-hello "Paul";
say-hello "Paula";

7.3. Multiple dispatch
It is possible to define multiple subroutines that have the same name but different signatures.
When the subroutine is called, the runtime environment will decide which version to use based on
the number and type of supplied arguments. This type of subroutine is defined the same way as
normal subs except that we use the multi keyword instead of sub.

29

multi greet($name) {
 say "Good morning $name";
}
multi greet($name, $title) {
 say "Good morning $title $name";
}

greet "Johnnie";
greet "Laura","Mrs.";

7.4. Default and Optional Parameters
If a subroutine is defined to accept an argument, and we call it without providing it with the
required argument, it will fail.

Perl 6 provides us the ability to define subroutines with:

• Optional Parameters

• Default Parameters

Optional parameters are defined by appending ? to the parameter name.

sub say-hello($name?) {
 with $name { say "Hello " ~ $name }
 else { say "Hello Human" }
}
say-hello;
say-hello("Laura");

If the user doesn’t need to supply an argument, a default value can be defined.
This is done by assigning a value to the parameter within the subroutine definition.

sub say-hello($name="Matt") {
 say "Hello " ~ $name;
}
say-hello;
say-hello("Laura");

7.5. Returning values
All the subroutines we’ve seen so far do something — they display some text on the terminal.

Sometimes, though, we execute a subroutine for its return value so we can use it later in the flow
of our program.

If a function is allowed to run through it’s block to the end, the last statement or expression will

30

determine the return value.

Implicit return

sub squared ($x) {
 $x ** 2;
}
say "7 squared is equal to " ~ squared(7);

For the sake of clarity, it might be a good idea to explicitly specify what we want returned. This can
be done using the return keyword.

Explicit return

sub squared ($x) {
 return $x ** 2;
}
say "7 squared is equal to " ~ squared(7);

7.5.1. Restricting return values

In one of the previous examples, we saw how we can restrict the accepted argument to be of a
certain type. The same can be done with return values.

To restrict the return value to a certain type, we either use the returns trait or the arrow notation
--> in the signature.

Using the returns trait

sub squared ($x) returns Int {
 return $x ** 2;
}
say "1.2 squared is equal to " ~ squared(1.2);

Using the arrow

sub squared ($x --> Int) {
 return $x ** 2;
}
say "1.2 squared is equal to " ~ squared(1.2);

If we fail to provide a return value that matches the type constraint, an error will be thrown.

Type check failed for return value; expected Int but got Rat (1.44)

31

Not only can type constraints control the type of the return value; they can also
control its definedness.

In the previous examples, we specified that the return value should be an Int.

We could also have specified that the returned Int should be strictly defined or
undefined using the following signatures:
-→ Int:D and -→ Int:U

That being said, it is good practice to use those type constraints.
Below is the modified version of the previous example that uses :D to force the
returned Int to be defined.

sub squared ($x --> Int:D) {
 return $x ** 2;
}
say "1.2 squared is equal to " ~ squared(1.2);

For more info on subroutines and functions, see https://docs.perl6.org/language/
functions

32

https://docs.perl6.org/language/functions
https://docs.perl6.org/language/functions

Chapter 8. Functional Programming
In this chapter we will take a look at some of the features that facilitate Functional Programming.

8.1. Functions are first-class citizens
Functions/subroutines are first-class citizens:

• They can be passed as arguments

• They can be returned from other functions

• They can be assigned to variables

A great example is the map function.
map is a higher order function, it can accept another function as an argument.

Script

my @array = <1 2 3 4 5>;
sub squared($x) {
 $x ** 2
}
say map(&squared,@array);

Output

(1 4 9 16 25)

Explanation

We defined a subroutine called squared that takes an argument and multiplies that argument by
itself.
Next, we used map, a higher order function, and gave it two arguments, the squared subroutine and
an array.
The result is a list of the squared elements of the array.

Notice that when passing a subroutine as an argument, we need to prepend & to its name.

8.2. Anonymous functions
An anonymous function is also called a lambda.
An anonymous function is not bound to an identifier (it has no name).

Let’s rewrite the map example and have it use an anonymous function

my @array = <1 2 3 4 5>;
say map(-> $x {$x ** 2},@array);

33

Notice that instead of declaring the squared subroutine and passing it as an argument to map, we
defined it within the anonymous subroutine as -> $x {$x ** 2}.

In Perl 6 parlance, we call this notation a pointy block

A pointy block may also be used to assign functions to variables:

my $squared = -> $x {
 $x ** 2
}
say $squared(9);

8.3. Chaining
In Perl 6, methods can be chained, so you’re not required to pass the result of one method to
another as an argument.

To illustrate: Given an array, you may need to return the unique values of the array, sorted from
biggest to smallest.

Here’s a non-chained solution:

my @array = <7 8 9 0 1 2 4 3 5 6 7 8 9>;
my @final-array = reverse(sort(unique(@array)));
say @final-array;

Here, we call unique on @array, pass the result as an argument to sort, and then pass that result to
reverse.

In contrast, with chained methods, the above example can be rewritten as:

my @array = <7 8 9 0 1 2 4 3 5 6 7 8 9>;
my @final-array = @array.unique.sort.reverse;
say @final-array;

You can already see that chaining methods is easier on the eye.

8.4. Feed Operator
The feed operator, called pipe in some functional programming languages, further illustrates
method chaining.

34

Forward Feed

my @array = <7 8 9 0 1 2 4 3 5 6 7 8 9>;
@array ==> unique()
 ==> sort()
 ==> reverse()
 ==> my @final-array;
say @final-array;

Explanation

Start with `@array` then return a list of unique elements
 then sort it
 then reverse it
 then store the result in @final-array

Note that the flow of the method calls is top-down — from first to final step.

Backward Feed

my @array = <7 8 9 0 1 2 4 3 5 6 7 8 9>;
my @final-array-v2 <== reverse()
 <== sort()
 <== unique()
 <== @array;
say @final-array-v2;

Explanation

The backward feed is like the forward feed, but in reverse.
The flow of the method calls is bottom-up — from final to first step.

8.5. Hyper operator
The hyper operator >>. will call a method on all elements of a list and return a list of the results.

my @array = <0 1 2 3 4 5 6 7 8 9 10>;
sub is-even($var) { $var %% 2 };

say @array>>.is-prime;
say @array>>.&is-even;

Using the hyper operator we can call methods already defined in Perl 6, e.g. is-prime that tells us if
a number is prime or not.
In addition we can define new subroutines and call them using the hyper operator. In this case we
have to prepend & to the name of the method; e.g., &is-even.

This is very practical as it relieves us from writing a for loop to iterate over each value.

35

Perl 6 guarantees that the order of the results is the same as that of the original list.
However, there is no guarantee that Perl 6 will actually call the methods in list
order or in the same thread. So, be careful with methods that have side-effects,
such as say or print.

8.6. Junctions
A junction is a logical superposition of values.

In the below example 1|2|3 is a junction.

my $var = 2;
if $var == 1|2|3 {
 say "The variable is 1 or 2 or 3"
}

The use of junctions usually triggers autothreading; the operation is carried out for each junction
element, and all the results are combined into a new junction and returned.

8.7. Lazy Lists
A lazy list is a list that is lazily evaluated.
Lazy evaluation delays the evaluation of an expression until required, and avoids repeating
evaluations by storing results in a lookup table.

The benefits include:

• Performance increase by avoiding needless calculations

• The ability to construct potentially infinite data structures

• The ability to define control flow

To build a lazy list we use the infix operator …
A lazy list has initial element(s), a generator and an endpoint.

Simple lazy list

my $lazylist = (1 ... 10);
say $lazylist;

The initial element is 1 and the endpoint is 10. No generator was defined so the default generator is
the successor (+1)
In other words this lazy list may return (if requested) the following elements (1, 2, 3, 4, 5, 6, 7, 8, 9,
10)

36

Infinite lazy list

my $lazylist = (1 ... Inf);
say $lazylist;

This list may return (if requested) any integer between 1 and infinity, in other words any integer
number.

Lazy list built using a deduced generator

my $lazylist = (0,2 ... 10);
say $lazylist;

The initial elements are 0 and 2 and the endpoint is 10. No generator was defined, but using the
initial elements, Perl 6 will deduce that the generator is (+2)
This lazy list may return (if requested) the following elements (0, 2, 4, 6, 8, 10)

Lazy list built using a defined generator

my $lazylist = (0, { $_ + 3 } ... 12);
say $lazylist;

In this example, we defined explicitly a generator enclosed in { }
This lazy list may return (if requested) the following elements (0, 3, 6, 9, 12)

When using an explicit generator, the endpoint must be one of the values that the
generator can return.
If we reproduce the above example with the endpoint being 10 instead of 12, it will
not stop. The generator jumps over the endpoint.

Alternatively you can replace 0 … 10 with 0 …^ * > 10

You can read it as: From 0 until the first value greater than 10 (excluding it)

This will not stop the generator

my $lazylist = (0, { $_ + 3 } ... 10);
say $lazylist;

This will stop the generator

my $lazylist = (0, { $_ + 3 } ...^ * > 10);
say $lazylist;

8.8. Closures
All code objects in Perl 6 are closures, which means they can reference lexical variables from an
outer scope.

37

sub generate-greeting {
 my $name = "John Doe";
 sub greeting {
 say "Good Morning $name";
 };
 return &greeting;
}
my $generated = generate-greeting;
$generated();

If you run the above code, it will display Good Morning John Doe on the terminal.
While the result is fairly simple, what is interesting about this example, is that the greeting inner
subroutine was returned from the outer subroutine before being executed.

$generated has become a closure.

A closure is a special kind of object that combines two things:

• A Subroutine

• The Environment in which that subroutine was created.

The environment consists of any local variable that was in-scope at the time that the closure was
created. In this case, $generated is a closure that incorporates both the greeting subroutine and the
John Doe string that existed when the closure was created.

Let’s take a look at a more interesting example.

sub greeting-generator($period) {
 return sub ($name) {
 return "Good $period $name"
 }
}
my $morning = greeting-generator("Morning");
my $evening = greeting-generator("Evening");

say $morning("John");
say $evening("Jane");

In this example, we have defined a subroutine greeting-generator($period) that accepts a single
argument $period and returns a new subroutine. The subroutine it returns accepts a single
argument $name and returns the constructed greeting.

Basically, greeting-generator is a subroutine factory. In this example, we used greeting-generator to
create two new subroutines, one that says Good Morning and one that says Good Evening.

$morning and $evening are both closures. They share the same subroutine body definition, but store
different environments.
In $morning 's environment $period is Morning. In $evening 's environment $period is Evening.

38

Chapter 9. Classes & Objects
In the previous chapter, we learned how Perl 6 facilitates Functional Programming.
In this chapter we will take a look at Object Oriented programming in Perl 6.

9.1. Introduction
Object Oriented programming is one of the widely used paradigms nowadays.
An object is a set of variables and subroutines bundled together.
The variables are called attributes and the subroutines are called methods.
Attributes define the state and methods define the behavior of an object.

A class is a template for creating objects.

In order to understand the relationship consider the below example:

There are 4 people present in a room objects ⇒ 4 people

These 4 people are humans class ⇒ Human

They have different names, age, sex and
nationality

attributes ⇒ name, age, sex, nationality

In object oriented parlance, we say that objects are instances of a class.

Consider the below script:

class Human {
 has $.name;
 has $.age;
 has $.sex;
 has $.nationality;
}

my $john = Human.new(name => 'John', age => 23, sex => 'M', nationality =>
'American');
say $john;

The class keyword is used to define a class.
The has keyword is used to define attributes of a class.
The .new() method is called a constructor. It creates the object as an instance of the class it has
been called on.

In the above script, a new variable $john holds a reference to a new instance of "Human" defined by
Human.new().
The arguments passed to the .new() method are used to set the attributes of the underlying object.

A class can be given lexical scope using my:

39

my class Human {

}

9.2. Encapsulation
Encapsulation is an object oriented concept that bundles a set of data and methods together.
The data (attributes) within an object should be private, in other words, accessible only from
within the object.
In order to access the attributes from outside the object, we use methods called accessors.

The below two scripts have the same result.

Direct access to the variable:

my $var = 7;
say $var;

Encapsulation:

my $var = 7;
sub sayvar {
 $var;
}
say sayvar;

The method sayvar is an accessor. It lets us access the value of the variable without getting direct
access to it.

Encapsulation is facilitated in Perl 6 with the use of twigils.
Twigils are secondary sigils. They come between the sigil and the attribute name.
Two twigils are used in classes:

• ! is used to explicitly declare that the attribute is private.

• . is used to automatically generate an accessor for the attribute.

By default, all attributes are private but it is a good habit to always use the ! twigil.

Therefore, we should rewrite the above class as:

40

class Human {
 has $!name;
 has $!age;
 has $!sex;
 has $!nationality;
}

my $john = Human.new(name => 'John', age => 23, sex => 'M', nationality =>
'American');
say $john;

Append to the script the following statement: say $john.age;
It will return this error: Method 'age' not found for invocant of class 'Human' because $!age is
private and can only be used within the object. Trying to access it outside the object will return an
error.

Now replace has $!age with has $.age and observe the result of say $john.age;

9.3. Named vs. Positional Parameters
In Perl 6, all classes inherit a default .new() constructor.
It can be used to create objects by providing it with arguments.
The default constructor can only be provided with named arguments.
In our example above, notice that the arguments supplied to .new() are defined by name:

• name ⇒ 'John'

• age ⇒ 23

What if I do not want to supply the name of each attribute each time I want to create an object?
Then I need to create another constructor that accepts positional arguments.

class Human {
 has $.name;
 has $.age;
 has $.sex;
 has $.nationality;
 # new constructor that overrides the default one.
 method new ($name,$age,$sex,$nationality) {
 self.bless(:$name,:$age,:$sex,:$nationality);
 }
}

my $john = Human.new('John',23,'M','American');
say $john;

41

9.4. Methods

9.4.1. Introduction

Methods are the subroutines of an object.
Like subroutines, they are a means of packaging a set of functionality, they accept arguments, have
a signature and can be defined as multi.

Methods are defined using the method keyword.
In normal circumstances, methods are required to perform some sort of action on the objects'
attributes. This enforces the concept of encapsulation. Object attributes can only be manipulated
from within the object using methods. The outside world can only interact with the object methods,
and has no direct access to its attributes.

class Human {
 has $.name;
 has $.age;
 has $.sex;
 has $.nationality;
 has $.eligible;
 method assess-eligibility {
 if self.age < 21 {
 $!eligible = 'No'
 } else {
 $!eligible = 'Yes'
 }
 }

}

my $john = Human.new(name => 'John', age => 23, sex => 'M', nationality =>
'American');
$john.assess-eligibility;
say $john.eligible;

Once methods are defined within a class, they can be called on an object using the dot notation:
object . method or as in the above example: $john.assess-eligibility

Within the definition of a method, if we need to reference the object itself to call another method
we use the self keyword.

Within the definition of a method, if we need to reference an attribute we use ! even if it was
defined with .
The rationale being that what the . twigil does is declare an attribute with ! and automate the
creation of an accessor.

In the above example, if self.age < 21 and if $!age < 21 would have the same effect, although
they are technically different:

42

• self.age calls the .age method (accessor)
Can be written alternatively as $.age

• $!age is a direct call to the variable

9.4.2. Private methods

Normal methods can be called on objects from outside the class.

Private methods are methods that can only be called from within the class.
A possible use case would be a method that calls another one for specific action. The method that
interfaces with the outside world is public while the one referenced should stay private. We do not
want users to call it directly, so we declare it as private.

The declaration of a private method requires the use of the ! twigil before its name.
Private methods are called with ! instead of .

method !iamprivate {
 # code goes in here
}

method iampublic {
 self!iamprivate;
 # do additional things
}

9.5. Class Attributes
Class attributes are attributes that belong to the class itself and not to its objects.
They can be initialized during definition.
Class attributes are declared using my instead of has.
They are called on the class itself instead of its objects.

class Human {
 has $.name;
 my $.counter = 0;
 method new($name) {
 Human.counter++;
 self.bless(:$name);
 }
}
my $a = Human.new('a');
my $b = Human.new('b');

say Human.counter;

43

9.6. Access Type
Until now, all the examples that we’ve seen have used accessors to get information from the objects'
attributes.

What if we need to modify the value of an attribute?
We need to label it as read/write using the keywords is rw

class Human {
 has $.name;
 has $.age is rw;
}
my $john = Human.new(name => 'John', age => 21);
say $john.age;

$john.age = 23;
say $john.age;

By default, all attributes are declared as read only but you can explicitly do it using is readonly

9.7. Inheritance

9.7.1. Introduction

Inheritance is another concept of object oriented programming.

When defining classes, soon enough we will realize that some attributes/methods are common to
many classes.
Should we duplicate code?
NO! We should use inheritance

Let’s consider we want to define two classes, a class for Human beings and a class for Employees.
Human beings have 2 attributes: name and age.
Employees have 4 attributes: name, age, company and salary

One would be tempted to define the classes as:

44

class Human {
 has $.name;
 has $.age;
}

class Employee {
 has $.name;
 has $.age;
 has $.company;
 has $.salary;
}

While technically correct, the above piece of code is considered conceptually poor.

A better way to write this would be:

class Human {
 has $.name;
 has $.age;
}

class Employee is Human {
 has $.company;
 has $.salary;
}

The is keyword defines inheritance.
In object oriented parlance, we say Employee is a child of Human and that Human is a parent of
Employee.

All child classes inherit the attributes and methods of the parent class, so there is no need to
redefine them.

9.7.2. Overriding

Classes inherit all attributes and methods from their parent classes.
There are cases where we need the method in the child class to behave differently than the one
inherited.
To achieve this, we redefine the method in the child class.
This concept is called overriding.

In the below example, the method introduce-yourself is inherited by the Employee class.

45

class Human {
 has $.name;
 has $.age;
 method introduce-yourself {
 say 'Hi I am a human being, my name is ' ~ self.name;
 }
}

class Employee is Human {
 has $.company;
 has $.salary;
}

my $john = Human.new(name =>'John', age => 23,);
my $jane = Employee.new(name =>'Jane', age => 25, company => 'Acme', salary => 4000);

$john.introduce-yourself;
$jane.introduce-yourself;

Overriding works like this:

class Human {
 has $.name;
 has $.age;
 method introduce-yourself {
 say 'Hi I am a human being, my name is ' ~ self.name;
 }
}

class Employee is Human {
 has $.company;
 has $.salary;
 method introduce-yourself {
 say 'Hi I am a employee, my name is ' ~ self.name ~ ' and I work at: ' ~
self.company;
 }

}

my $john = Human.new(name =>'John',age => 23,);
my $jane = Employee.new(name =>'Jane',age => 25,company => 'Acme',salary => 4000);

$john.introduce-yourself;
$jane.introduce-yourself;

Depending of which class the object is, the right method will be called.

46

9.7.3. Submethods

Submethods are a type of method that are not inherited by child classes.
They are only accessible from the class they were declared in.
They are defined using the submethod keyword.

9.8. Multiple Inheritance
Multiple inheritance is allowed in Perl 6. A class can inherit from multiple other classes.

class bar-chart {
 has Int @.bar-values;
 method plot {
 say @.bar-values;
 }
}

class line-chart {
 has Int @.line-values;
 method plot {
 say @.line-values;
 }
}

class combo-chart is bar-chart is line-chart {
}

my $actual-sales = bar-chart.new(bar-values => [10,9,11,8,7,10]);
my $forecast-sales = line-chart.new(line-values => [9,8,10,7,6,9]);

my $actual-vs-forecast = combo-chart.new(bar-values => [10,9,11,8,7,10],
 line-values => [9,8,10,7,6,9]);
say "Actual sales:";
$actual-sales.plot;
say "Forecast sales:";
$forecast-sales.plot;
say "Actual vs Forecast:";
$actual-vs-forecast.plot;

Output

Actual sales:
[10 9 11 8 7 10]
Forecast sales:
[9 8 10 7 6 9]
Actual vs Forecast:
[10 9 11 8 7 10]

Explanation

47

The combo-chart class should be able to hold two series, one for the actual values plotted on bars,
and another for forecast values plotted on a line.
This is why we defined it as a child of line-chart and bar-chart.
You should have noticed that calling the method plot on the combo-chart didn’t yield the required
result. Only one series was plotted.
Why did this happen?
combo-chart inherits from line-chart and bar-chart, and both of them have a method called plot.
When we call that method on combo-chart Perl 6 internals will try to resolve the conflict by calling
one of the inherited methods.

Correction

In order to behave correctly, we should have overridden the method plot in the combo-chart.

class bar-chart {
 has Int @.bar-values;
 method plot {
 say @.bar-values;
 }
}

class line-chart {
 has Int @.line-values;
 method plot {
 say @.line-values;
 }
}

class combo-chart is bar-chart is line-chart {
 method plot {
 say @.bar-values;
 say @.line-values;
 }
}

my $actual-sales = bar-chart.new(bar-values => [10,9,11,8,7,10]);
my $forecast-sales = line-chart.new(line-values => [9,8,10,7,6,9]);

my $actual-vs-forecast = combo-chart.new(bar-values => [10,9,11,8,7,10],
 line-values => [9,8,10,7,6,9]);
say "Actual sales:";
$actual-sales.plot;
say "Forecast sales:";
$forecast-sales.plot;
say "Actual vs Forecast:";
$actual-vs-forecast.plot;

48

Output

Actual sales:
[10 9 11 8 7 10]
Forecast sales:
[9 8 10 7 6 9]
Actual vs Forecast:
[10 9 11 8 7 10]
[9 8 10 7 6 9]

9.9. Roles
Roles are similar to classes in that they are a collection of attributes and methods.

Roles are declared with the keyword role. Classes that wish to implement a role, do so using the
does keyword.

49

Let’s rewrite the multiple inheritance example using roles:

role bar-chart {
 has Int @.bar-values;
 method plot {
 say @.bar-values;
 }
}

role line-chart {
 has Int @.line-values;
 method plot {
 say @.line-values;
 }
}

class combo-chart does bar-chart does line-chart {
 method plot {
 say @.bar-values;
 say @.line-values;
 }
}

my $actual-sales = bar-chart.new(bar-values => [10,9,11,8,7,10]);
my $forecast-sales = line-chart.new(line-values => [9,8,10,7,6,9]);

my $actual-vs-forecast = combo-chart.new(bar-values => [10,9,11,8,7,10],
 line-values => [9,8,10,7,6,9]);
say "Actual sales:";
$actual-sales.plot;
say "Forecast sales:";
$forecast-sales.plot;
say "Actual vs Forecast:";
$actual-vs-forecast.plot;

Run the above script and you will see that results are the same.

By now you’re asking yourself: If roles behave like classes, what’s their use?
To answer your question, modify the first script used to showcase multiple inheritance, the one
where we forgot to override the plot method.

50

role bar-chart {
 has Int @.bar-values;
 method plot {
 say @.bar-values;
 }
}

role line-chart {
 has Int @.line-values;
 method plot {
 say @.line-values;
 }
}

class combo-chart does bar-chart does line-chart {
}

my $actual-sales = bar-chart.new(bar-values => [10,9,11,8,7,10]);
my $forecast-sales = line-chart.new(line-values => [9,8,10,7,6,9]);

my $actual-vs-forecast = combo-chart.new(bar-values => [10,9,11,8,7,10],
 line-values => [9,8,10,7,6,9]);
say "Actual sales:";
$actual-sales.plot;
say "Forecast sales:";
$forecast-sales.plot;
say "Actual vs Forecast:";
$actual-vs-forecast.plot;

Output

===SORRY!===
Method 'plot' must be resolved by class combo-chart because it exists in multiple
roles (line-chart, bar-chart)

Explanation

If multiple roles are applied to the same class and a conflict exists, a compile-time error will be
thrown.
This is a much safer approach than multiple inheritance, where conflicts are not considered errors
and are simply resolved at runtime.

Roles will warn you that there’s a conflict.

9.10. Introspection
Introspection is the process of getting information about an object, like its type, attributes or
methods.

51

class Human {
 has Str $.name;
 has Int $.age;
 method introduce-yourself {
 say 'Hi I am a human being, my name is ' ~ self.name;
 }
}

class Employee is Human {
 has Str $.company;
 has Int $.salary;
 method introduce-yourself {
 say 'Hi I am a employee, my name is ' ~ self.name ~ ' and I work at: ' ~
self.company;
 }
}

my $john = Human.new(name =>'John',age => 23,);
my $jane = Employee.new(name =>'Jane',age => 25,company => 'Acme',salary => 4000);

say $john.WHAT;
say $jane.WHAT;
say $john.^attributes;
say $jane.^attributes;
say $john.^methods;
say $jane.^methods;
say $jane.^parents;
if $jane ~~ Human {say 'Jane is a Human'};

Introspection is facilitated by:

• .WHAT — returns the class from which the object was created

• .^attributes — returns all the attributes of the object

• .^methods — returns all the methods that can be called on the object

• .^parents — returns the parent classes of the object

• ~~ is called the smart-match operator. It evaluates to True if the object is created from the class
it is being compared against or any of its inheritances.

For more info on Object Oriented Programming in Perl 6, see:

• https://docs.perl6.org/language/classtut

• https://docs.perl6.org/language/objects

52

https://docs.perl6.org/language/classtut
https://docs.perl6.org/language/objects

Chapter 10. Exception Handling

10.1. Catching Exceptions
Exceptions are a special behavior that happens at runtime when something goes wrong.
We say that exceptions are thrown.

Consider the below script that runs correctly:

my Str $name;
$name = "Joanna";
say "Hello " ~ $name;
say "How are you doing today?"

Output

Hello Joanna
How are you doing today?

Now consider this script that throws an exception:

my Str $name;
$name = 123;
say "Hello " ~ $name;
say "How are you doing today?"

Output

Type check failed in assignment to $name; expected Str but got Int
 in block <unit> at exceptions.p6:2

Notice that whenever an error occurs (in this case, assigning a number to a string variable) the
program will stop and other lines of code will not be evaluated.

Exception handling is the process of catching an exception that has been thrown in order for the
script to continue working.

53

my Str $name;
try {
 $name = 123;
 say "Hello " ~ $name;
 CATCH {
 default {
 say "Can you tell us your name again, we couldn't find it in the register.";
 }
 }
}
say "How are you doing today?";

Output

Can you tell us your name again, we couldn't find it in the register.
How are you doing today?

Exception handling is done by using a try-catch block.

try {
 # code goes in here
 # if anything goes wrong, the script will enter the below CATCH block
 # if nothing goes wrong, the CATCH block will be ignored
 CATCH {
 default {
 # the code in here will be evaluated only if an exception has been thrown
 }
 }
}

The CATCH block can be defined the same way a given block is defined. This means we can catch and
handle differently many types of exceptions.

try {
 # code goes in here
 # if anything goes wrong, the script will enter the below CATCH block
 # if nothing goes wrong, the CATCH block will be ignored
 CATCH {
 when X::AdHoc { # do something if exception of type X::AdHoc is thrown }
 when X::IO { # do something if exception of type X::IO is thrown }
 when X::OS { # do something if exception of type X::OS is thrown }
 default { # do something if exception is thrown and doesn't belong to the
above types }
 }
}

54

10.2. Throwing Exceptions
Perl 6 also allows you to explicitly throw exceptions.
Two types of exceptions can be thrown:

• ad-hoc exceptions

• typed exceptions

ad-hoc

my Int $age = 21;
die "Error !";

typed

my Int $age = 21;
X::AdHoc.new(payload => 'Error !').throw;

Ad-hoc exceptions are thrown using the die subroutine, followed by the exception message.

Typed exceptions are objects, hence the use of the .new() constructor in the above example.
All typed exceptions descend from class X , below are a few examples:
X::AdHoc is the simplest exception type
X::IO is related to IO errors
X::OS is related to OS errors
X::Str::Numeric related to trying to coerce a string to a number

For a complete list of exception types and their associated methods, go to
https://docs.perl6.org/type-exceptions.html

55

https://docs.perl6.org/type-exceptions.html

Chapter 11. Regular Expressions
A regular expression, or regex, is a sequence of characters that is used for pattern matching.
Think of it as a pattern.

if 'enlightenment' ~~ m/ light / {
 say "enlightenment contains the word light";
}

In this example, the smart match operator ~~ is used to check if a string (enlightenment) contains
the word (light).
"Enlightenment" is matched against the regex m/ light /

11.1. Regex definition
A regular expression can be defined like this:

• /light/

• m/light/

• rx/light/

Unless specified explicitly, white space is ignored; m/light/ and m/ light / are the same.

11.2. Matching characters
Alphanumeric characters and the underscore _ are written as is.
All other characters have to be escaped using a backslash or surrounded by quotes.

Backslash

if 'Temperature: 13' ~~ m/ \: / {
 say "The string provided contains a colon :";
}

Single quotes

if 'Age = 13' ~~ m/ '=' / {
 say "The string provided contains an equal character = ";
}

Double quotes

if 'name@company.com' ~~ m/ "@" / {
 say "This is a valid email address because it contains an @ character";
}

56

11.3. Matching categories of characters
Characters can be classified into categories and we can match against them.
We can also match against the inverse of that category (everything except it):

Category Regex Inverse Regex

Word character (letter,
digit or underscore)

\w Any character except a
word character

\W

Digit \d Any character except a
digit

\D

Whitespace \s Any character except a
whitespace

\S

Horizontal whitespace \h Any character except a
horizontal whitespace

\H

Vertical whitespace \v Any character except a
vertical whitespace

\V

Tab \t Any character except a
Tab

\T

New line \n Any character except a
new line

\N

if "John123" ~~ / \d / {
 say "This is not a valid name, numbers are not allowed";
} else {
 say "This is a valid name"
}
if "John-Doe" ~~ / \s / {
 say "This string contains whitespace";
} else {
 say "This string doesn't contain whitespace"
}

11.4. Unicode properties
Matching against categories of characters, as seen in the preceding section, is convenient.
That being said, a more systematic approach would be to use Unicode properties.
This allows you to match against categories of characters inside and outside of
the ASCII standard.
Unicode properties are enclosed in <: >

57

if "Devanagari Numbers १२३" ~~ / <:N> / {
 say "Contains a number";
} else {
 say "Doesn't contain a number"
}
if "Привет, Иван." ~~ / <:Lu> / {
 say "Contains an uppercase letter";
} else {
 say "Doesn't contain an upper case letter"
}
if "John-Doe" ~~ / <:Pd> / {
 say "Contains a dash";
} else {
 say "Doesn't contain a dash"
}

11.5. Wildcards
Wildcards can also be used in a regex.

The dot . means any single character.

if 'abc' ~~ m/ a.c / {
 say "Match";
}
if 'a2c' ~~ m/ a.c / {
 say "Match";
}
if 'ac' ~~ m/ a.c / {
 say "Match";
} else {
 say "No Match";
}

11.6. Quantifiers
Quantifiers come after a character and are used to specify how many times we are expecting it.

The question mark ? means zero or one time.

58

if 'ac' ~~ m/ a?c / {
 say "Match";
} else {
 say "No Match";
}
if 'c' ~~ m/ a?c / {
 say "Match";
} else {
 say "No Match";
}

The star * means zero or multiple times.

if 'az' ~~ m/ a*z / {
 say "Match";
} else {
 say "No Match";
}
if 'aaz' ~~ m/ a*z / {
 say "Match";
} else {
 say "No Match";
}
if 'aaaaaaaaaaz' ~~ m/ a*z / {
 say "Match";
} else {
 say "No Match";
}
if 'z' ~~ m/ a*z / {
 say "Match";
} else {
 say "No Match";
}

The + means at least one time.

59

if 'az' ~~ m/ a+z / {
 say "Match";
} else {
 say "No Match";
}
if 'aaz' ~~ m/ a+z / {
 say "Match";
} else {
 say "No Match";
}
if 'aaaaaaaaaaz' ~~ m/ a+z / {
 say "Match";
} else {
 say "No Match";
}
if 'z' ~~ m/ a+z / {
 say "Match";
} else {
 say "No Match";
}

11.7. Match Results
Whenever the process of matching a string against a regex is successful, the match result is stored
in a special variable $/

Script

if 'Rakudo is a Perl 6 compiler' ~~ m/:s Perl 6/ {
 say "The match is: " ~ $/;
 say "The string before the match is: " ~ $/.prematch;
 say "The string after the match is: " ~ $/.postmatch;
 say "The matching string starts at position: " ~ $/.from;
 say "The matching string ends at position: " ~ $/.to;
}

Output

The match is: Perl 6
The string before the match is: Rakudo is a
The string after the match is: compiler
The matching string starts at position: 12
The matching string ends at position: 18

Explanation

$/ returns a Match Object (the string that matches the regex)
The following methods can be called on the Match Object:

60

.prematch returns the string preceding the match.

.postmatch returns the string following the match.

.from returns the starting position of the match.

.to returns the ending position of the match.

By default, whitespace in a regex definition is ignored.
If we want to match against a regex containing whitespace, we have to do so
explicitly.
The :s in the regex m/:s Perl 6/ forces whitespace to be considered.
Alternatively, we could have written the regex as m/ Perl\s6 / and used \s which
represents a whitespace.
If a regex contains more than a single whitespace, using :s is a better option than
using \s for each and every whitespace.

11.8. Example
Let’s check if an email is valid or not.
For the sake of this example we will assume that a valid email address has this format:
first name [dot] last name [at] company [dot] (com/org/net)

The regex used in this example for email validation is not very accurate.
Its sole purpose is to demonstrate regex functionality in Perl 6.
Do not use it as-is in production.

Script

my $email = 'john.doe@perl6.org';
my $regex = / <:L>+\.<:L>+\@<:L+:N>+\.<:L>+ /;

if $email ~~ $regex {
 say $/ ~ " is a valid email";
} else {
 say "This is not a valid email";
}

Output

john.doe@perl6.org is a valid email

Explanation

<:L> matches a single letter
<:L>+ matches one or more letters
\. matches a single [dot] character
\@ matches a single [at] character
<:L+:N> matches a letter or a single number
<:L+:N>+ matches one or more letters or numbers

The regex can be decomposed as following:

61

• first name <:L>+

• [dot] \.

• last name <:L>+

• [at] \@

• company name <:L+:N>+

• [dot] \.

• com/org/net <:L>+

Alternatively, a regex can be broken down into multiple named regexes

my $email = 'john.doe@perl6.org';
my regex many-letters { <:L>+ };
my regex dot { \. };
my regex at { \@ };
my regex many-letters-numbers { <:L+:N>+ };

if $email ~~ / <many-letters> <dot> <many-letters> <at> <many-letters-numbers> <dot>
<many-letters> / {
 say $/ ~ " is a valid email";
} else {
 say "This is not a valid email";
}

A named regex is defined using the following syntax: my regex regex-name { regex definition }
A named regex can be called using the following syntax: <regex-name>

 For more info on regexes, see https://docs.perl6.org/language/regexes

62

https://docs.perl6.org/language/regexes

Chapter 12. Perl 6 Modules
Perl 6 is a general purpose programming language. It can be used to tackle a multitude of tasks
including: text manipulation, graphics, web, databases, network protocols etc.

Reusability is a very important concept whereby programmers don’t have to reinvent the wheel
each time they want to do a new task.

Perl 6 allows the creation and redistribution of modules. Each module is a packaged set of
functionality that can be reused once installed.

Zef is a module management tool that comes with Rakudo Star.

To install a specific module, type the below command in your terminal:

zef install "module name"

 The Perl 6 modules directory can be found on: https://modules.perl6.org/

12.1. Using Modules
MD5 is a cryptographic hash function that produces a 128-bit hash value.
MD5 has a variety of applications, including the encryption of stored passwords in a database.
When a new user registers, their credentials are not stored as plain text but rather hashed. The
rationale behind this is that if the DB gets compromised, the attacker will not be able to know what
the passwords are.

Luckily, you don’t need to implement the MD5 algorithm yourself; there’s a Perl 6 module already
implemented.

Let’s install it:
zef install Digest::MD5

Now, run the below script:

use Digest::MD5;
my $password = "password123";
my $hashed-password = Digest::MD5.new.md5_hex($password);

say $hashed-password;

In order to run the md5_hex() function that creates hashes, we need to load the required module.
The use keyword loads the module for use in the script.

In practice MD5 hashing alone is not sufficient, because it is prone to dictionary
attacks.
It should be combined with a salt
https://en.wikipedia.org/wiki/Salt_(cryptography).

63

https://modules.perl6.org/
https://en.wikipedia.org/wiki/Salt_(cryptography)

Chapter 13. Unicode
Unicode is a standard for encoding and representing text for most writing systems in the world.
UTF-8 is a character encoding capable of encoding all possible characters, or code points, in
Unicode.

Characters are defined by a:
Grapheme: Visual representation.
Code point: A number assigned to the character.
Code point name: A name assigned to the character.

13.1. Using Unicode
Let’s look at how we can output characters using Unicode

say "a";
say "\x0061";
say "\c[LATIN SMALL LETTER A]";

The above 3 lines showcase different ways of building a character:

1. Writing the character directly (grapheme)

2. Using \x and the code point

3. Using \c and the code point name

Now lets output a smiley

say "☺";
say "\x263a";
say "\c[WHITE SMILING FACE]";

Another example combining two code points

say "á";
say "\x00e1";
say "\x0061\x0301";
say "\c[LATIN SMALL LETTER A WITH ACUTE]";

The letter á can be written:

• using its unique code point \x00e1

• or as a combination of the code points of a and acute \x0061\x0301

64

Some of the methods that can be used:

say "á".NFC;
say "á".NFD;
say "á".uniname;

Output

NFC:0x<00e1>
NFD:0x<0061 0301>
LATIN SMALL LETTER A WITH ACUTE

NFC returns the unique code point.
NFD decomposes the character and return the code point of each part.
uniname returns the code point name.

Unicode letters can be used as identifiers:

my $Δ = 1;
$Δ++;
say $Δ;

Unicode can be used to do math:

my $var = 2 + ⅒;
say $var;

13.2. Unicode-aware Operations

13.2.1. Numbers

Arabic numerals are the ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. This numeral set is the most used
worldwide.

Nonetheless different sets of numerals are used to a lesser extent in different parts of the world.

No special care needs to be taken when using a numeral set different than the Arabic numerals. All
methods/operators work as expected.

say (٤,٥,٦,1,2,3).sort; # (1 2 3 4 5 6)
say 1 + ٩; # 10

13.2.2. Strings

If we were to use generic string operations, we might not always get the result that we were looking
for, especially when comparing or sorting.

65

Comparison

say 'a' cmp 'B'; # More

The above example shows that a is bigger than B. The reason being that the code point of lowercase
a is bigger than the code point of capital B.

While technically correct, this is probably not what we were looking for.

Luckily Perl 6 has methods/operators that implement the Unicode Collation Algorithm.
One of them is unicmp that behaves like the above showcased cmp but is unicode-aware.

say 'a' unicmp 'B'; # Less

As you can see, using the unicmp operator now yields the expected result that a is smaller than B.

Sorting

As an alternative to the sort method that sorts using code points, Perl 6 provides a collate method
that implements the Unicode Collation Algorithm.

say ('a','b','c','D','E','F').sort; # (D E F a b c)
say ('a','b','c','D','E','F').collate; # (a b c D E F)

66

http://unicode.org/reports/tr10/
http://unicode.org/reports/tr10/

Chapter 14. Parallelism, Concurrency and
Asynchrony

14.1. Parallelism
Under normal circumstances, all tasks in a program run sequentially.
This might not be a problem, unless what you’re trying to do takes a lot of time.

Thankfully, Perl 6 has features that will enable you to run things in parallel.
At this stage, it is important to note that parallelism can mean one of two things:

• Task Parallelism: Two (or more) independent expressions running in parallel.

• Data Parallelism: A single expression iterating over a list of elements in parallel.

Let’s begin with the latter.

14.1.1. Data Parallelism

my @array = (0..50000); # Array population
my @result = @array.map({ is-prime $_ }); # call is-prime for each array element
say now - INIT now; # Output the time it took for the script
to complete

Considering the above example:

We are only doing one operation @array.map({ is-prime $_ })
The is-prime subroutine is being called for each array element sequentially:
is-prime @array[0] then is-prime @array[1] then is-prime @array[2] etc.

Fortunately we can call is-prime on multiple array elements at the same time:

my @array = (0..50000); # Array population
my @result = @array.race.map({ is-prime $_ }); # call is-prime for each array element
say now - INIT now; # Output the time it took to complete

Notice the use of race in the expression. This method will enable parallel iteration of the array
elements.

After running both examples (with and without race), compare the time it took for both scripts to
complete.

67

race will not preserve the order of elements. If you wish to do, so use hyper instead.

race

my @array = (1..1000);
my @result = @array.race.map({$_ + 1});
.say for @result;

hyper

my @array = (1..1000);
my @result = @array.hyper.map({$_ + 1});
.say for @result;

If you run both examples, you should notice that one is sorted and the other is not.

14.1.2. Task Parallelism

my @array1 = (0..49999);
my @array2 = (2..50001);

my @result1 = @array1.map({is-prime($_ + 1)});
my @result2 = @array2.map({is-prime($_ - 1)});

say @result1 eqv @result2;

say now - INIT now;

Considering the above example:

1. We defined 2 arrays

2. applied a different operation for each array and stored the results

3. and checked if both results are the same

The script waits for @array1.map({is-prime($_ + 1)}) to finish
and then evaluates @array2.map({is-prime($_ - 1)})

Both operations applied to each array do not depend on each other.

68

Why not do both in parallel?

my @array1 = (0..49999);
my @array2 = (2..50001);

my $promise1 = start @array1.map({is-prime($_ + 1)}).eager;
my $promise2 = start @array2.map({is-prime($_ - 1)}).eager;

my @result1 = await $promise1;
my @result2 = await $promise2;

say @result1 eqv @result2;

say now - INIT now;

Explanation

The start subroutine evaluates the code and returns an object of type promise or shortly a
promise.
If the code is evaluated correctly, the promise will be kept.
If the code throws an exception, the promise will be broken.

The await subroutine waits for a promise.
If it’s kept it will get the returned values.
If it’s broken it will get the exception thrown.

Check the time it took each script to complete.

Parallelism always adds a threading overhead. If that overhead is not offset by
gains in computational speed, the script will seem slower.
This is why, using race, hyper, start and await for fairly simple scripts can actually
slow them down.

14.2. Concurrency and Asynchrony

For more info on Concurrency and Asynchronous Programming, see
https://docs.perl6.org/language/concurrency

69

https://docs.perl6.org/language/concurrency

Chapter 15. Native Calling Interface
Perl 6 gives us the ability to use C libraries, using the Native Calling Interface.

NativeCall is a standard module that ships with Perl 6 and offers a set of functionality to ease the
job of interfacing Perl 6 and C.

15.1. Calling a function
Consider the below C code that defines a function called hellofromc. This function prints on the
terminal Hello from C. It doesn’t accept any argument nor return any value.

ncitest.c

#include <stdio.h>

void hellofromc () {
 printf("Hello from C\n");
}

Depending on your OS run the following commands to compile the above C code into a library.

On Linux:

gcc -c -fpic ncitest.c
gcc -shared -o libncitest.so ncitest.o

On Windows:

gcc -c ncitest.c
gcc -shared -o ncitest.dll ncitest.o

On macOS:

gcc -dynamiclib -o libncitest.dylib ncitest.c

Within the same directory where you compiled your C library, create a new Perl 6 file that contains
the below code and run it.

ncitest.p6

use NativeCall;

constant LIBPATH = "$*CWD/ncitest";
sub hellofromc() is native(LIBPATH) { * }

hellofromc();

70

Explanation:

First of all we declared that we will be using the NativeCall module.
Then we created a constant LIBPATH that holds the path to the C library.
Notice that $*CWD returns the current working directory.
Then we created a new Perl 6 subroutine called hellofromc() that should act as a wrapper to its
counterpart C function having the same name and residing in the C library found in LIBPATH.
All of this was done by using the is native trait.
Finally we called our Perl 6 subroutine.

In essence, it all boils down to declaring a subroutine with the trait is native and the name of the C
library.

15.2. Renaming a function
In the above part, we saw how we can call a very simple C function by wrapping it with a Perl 6
subroutine having the same name, using the is native trait.

In some cases, we would want to change the name of the Perl 6 subroutine.
To do so, we use the is symbol trait.

Lets modify the above Perl 6 script and rename the Perl 6 subroutine hello instead of hellofromc

ncitest.p6

use NativeCall;

constant LIBPATH = "$*CWD/ncitest";
sub hello() is native(LIBPATH) is symbol('hellofromc') { * }

hello();

Explanation:

In case the Perl 6 subroutine has a different name than its C counterpart, we should use the is
symbol trait with the name of the original C function.

15.3. Passing Arguments
Compile the following modified C library and run the Perl 6 script found below again.
Notice how we modified both C and Perl 6 code to accept a string (char* in C and Str in Perl 6)

ncitest.c

#include <stdio.h>

void hellofromc (char* name) {
 printf("Hello, %s! This is C!\n", name);
}

71

ncitest.p6

use NativeCall;

constant LIBPATH = "$*CWD/ncitest";
sub hello(Str) is native(LIBPATH) is symbol('hellofromc') { * }

hello('Jane');

15.4. Returning values
Lets repeat the process one more time and create a simple calculator that takes 2 integers and add
them.
Compile the C library and run the Perl 6 script.

ncitest.c

int add (int a, int b) {
 return (a + b);
}

ncitest.p6

use NativeCall;

constant LIBPATH = "$*CWD/ncitest";
sub add(int32,int32) returns int32 is native(LIBPATH) { * }

say add(2,3);

Notice how both C and Perl 6 functions accept two integers and return one (int in C and int32 in
Perl 6)

15.5. Types
You might have asked yourself why did we use int32 instead of Int in the latest Perl 6 script.
Some Perl 6 types like Int, Rat etc. can’t be used as is to pass and receive values from a C function.
One must use in Perl 6 the same types as the ones in C.

Luckily Perl 6 provides many types that map to their respective C counterpart.

C Type Perl 6 Type

char
int8

int8_t

short
int16

int16_t

72

C Type Perl 6 Type

int
int32

int32_t

int64_t int64

unsigned char
uint8

uint8_t

unsigned short
uint16

uint16_t

unsigned int
uint32

uint32_t

uint64_t uint64

long long

long long longlong

float num32

double num64

size_t size_t

bool bool

char* (String) Str

Arrays: For example int* (Array of int) and
double* (Array of double)

CArray: For example CArray[int32] and
CArray[num64]

For more info on the Native Calling Interface, see https://docs.perl6.org/language/
nativecall

73

https://docs.perl6.org/language/nativecall
https://docs.perl6.org/language/nativecall

Chapter 16. The Community
• #perl6 IRC channel. Much discussion happens on IRC. This should be your go to place for any

enquiry: https://perl6.org/community/irc

• p6weekly a weekly overview of changes in and around Perl 6.

• pl6anet blog aggregator. Stay tuned by reading blog posts that focus on Perl 6.

• /r/perl6 subscribe to the Perl 6 subreddit.

• @perl6org follow the community on twitter.

• P6lert alerts from Perl 6 Core Developers. Keep up to date with important changes.

74

irc://irc.freenode.net/#perl6
https://perl6.org/community/irc
https://p6weekly.wordpress.com
http://pl6anet.org
https://www.reddit.com/r/perl6/
https://twitter.com/perl6org
https://alerts.perl6.org

	Perl 6 Introduction
	Table of Contents
	Chapter 1. Introduction
	1.1. What is Perl 6
	1.2. Jargon
	1.3. Installing Perl 6
	1.4. Running Perl 6 code
	1.5. Editors
	1.6. Hello World!
	1.7. Syntax overview

	Chapter 2. Operators
	2.1. Common Operators
	2.2. Reversed Operators
	2.3. Reduction Operators

	Chapter 3. Variables
	3.1. Scalars
	3.2. Arrays
	3.3. Hashes
	3.4. Types
	3.5. Introspection
	3.6. Scoping
	3.7. Assignment vs. Binding

	Chapter 4. Functions and mutators
	Chapter 5. Loops and conditions
	5.1. if
	5.2. unless
	5.3. with
	5.4. for
	5.5. given
	5.6. loop

	Chapter 6. I/O
	6.1. Basic I/O using the Terminal
	6.2. Running Shell Commands
	6.3. File I/O
	6.4. Working with files and directories

	Chapter 7. Subroutines
	7.1. Definition
	7.2. Signature
	7.3. Multiple dispatch
	7.4. Default and Optional Parameters
	7.5. Returning values

	Chapter 8. Functional Programming
	8.1. Functions are first-class citizens
	8.2. Anonymous functions
	8.3. Chaining
	8.4. Feed Operator
	8.5. Hyper operator
	8.6. Junctions
	8.7. Lazy Lists
	8.8. Closures

	Chapter 9. Classes & Objects
	9.1. Introduction
	9.2. Encapsulation
	9.3. Named vs. Positional Parameters
	9.4. Methods
	9.5. Class Attributes
	9.6. Access Type
	9.7. Inheritance
	9.8. Multiple Inheritance
	9.9. Roles
	9.10. Introspection

	Chapter 10. Exception Handling
	10.1. Catching Exceptions
	10.2. Throwing Exceptions

	Chapter 11. Regular Expressions
	11.1. Regex definition
	11.2. Matching characters
	11.3. Matching categories of characters
	11.4. Unicode properties
	11.5. Wildcards
	11.6. Quantifiers
	11.7. Match Results
	11.8. Example

	Chapter 12. Perl 6 Modules
	12.1. Using Modules

	Chapter 13. Unicode
	13.1. Using Unicode
	13.2. Unicode-aware Operations

	Chapter 14. Parallelism, Concurrency and Asynchrony
	14.1. Parallelism
	14.2. Concurrency and Asynchrony

	Chapter 15. Native Calling Interface
	15.1. Calling a function
	15.2. Renaming a function
	15.3. Passing Arguments
	15.4. Returning values
	15.5. Types

	Chapter 16. The Community

