
Using Perl 6

Jonathan S. Duff Moritz Lenz Carl Mäsak
Patrick R. Michaud Jonathan Worthington

With contributions by the community

Fonts: Adobe MinionPro, Adobe MyriadPro, B&H Luxi Sans.
LATEX-Layout: Nikolai Prokoschenko et al. Big thanks to Konrad Mühler for his LATEX tips
collection (http://www.kfiles.de/latex.php)

http://www.kfiles.de/latex.php

Contents

1 Preface 1
1.1 Audience . 2
1.2 Format of this book . 2
1.3 Relationship between Perl 6 and Perl 5 . 2
1.4 Perl 6 implementations . 3
1.5 Installing Rakudo . 3
1.6 Executing programs . 4
1.7 Getting involved . 4

2 The Basics 5
2.1 Exercises . 13

3 Operators 15
3.1 A Word on Precedence . 20
3.2 Comparisons and Smart Matching . 21

3.2.1 Numeric Comparisons . 22
3.2.2 String Comparisons . 22
3.2.3 Smart Matching . 24

4 Subs and Signatures 27

i

4.1 Declaring A Subroutine . 27
4.2 Adding Signatures . 30

4.2.1 The Basics . 30
4.2.2 Passing Arrays, Hashes and Code . 31
4.2.3 Interpolating Arrays and Hashes . 32
4.2.4 Optional Parameters . 33
4.2.5 Named Parameters . 34
4.2.6 Slurpy Parameters . 37

4.3 Returning Results . 38
4.4 Working With Types . 40

4.4.1 Basic Types . 40
4.4.2 Adding Constraints . 41

4.5 Captures . 42
4.5.1 Creating And Using A Capture . 43
4.5.2 Captures In Signatures . 44

4.6 Unpacking . 45
4.7 Currying . 46
4.8 Introspection . 47

5 Multis 51
5.1 Constraints . 53
5.2 Narrowness . 55
5.3 Multiple arguments . 56
5.4 Bindability checks . 59
5.5 Nested Signatures in Multi-dispatch . 60
5.6 Protos . 61
5.7 Multi Methods . 61
5.8 Toying with the candidate list . 62

6 Classes and Objects 63

ii

6.1 Starting with class . 64
6.2 I can has state? . 65
6.3 Methods . 66
6.4 Constructors . 68
6.5 Consuming our class . 68
6.6 Exercises . 70

7 Roles 73
7.1 What is a role? . 76
7.2 Compile Time Composition . 77

7.2.1 Multi-methods and composition . 78
7.2.2 Calling all candidates . 79
7.2.3 Expressing requirements . 79

7.3 Runtime Application of Roles . 80
7.3.1 Differences from compile time composition 81
7.3.2 The but operator . 81

7.4 Parametric Roles . 82

8 Subtypes 83

9 Patternmatching 87
9.1 Anchors . 92
9.2 Captures . 93
9.3 Named regexes . 95
9.4 Modiöers . 96
9.5 Backtracking control . 97
9.6 Substitutions . 98
9.7 Other Regex Features . 99
9.8 Match objects . 100

10Grammars 103
10.1 Grammar Inheritance . 106

iii

10.2 Extracting data . 108

11Built-in types, operators andmethods 113
11.1 Numbers . 113
11.2 Strings . 116
11.3 Bool . 117

iv

1
Preface

Perl 6 is a language speciĕcation for which multiple compilers and interpreters exist in var-
ious stages of completeness. ese implementations have in turn inĘuenced the design
of the language by highlighting misfeatures, contradictions, or features of difficult imple-
mentation and little beneĕt. is process of iteration has produced a more cohesive and
consistent language speciĕcation.

Perl 6 is versatile, intuitive, and Ęexible. It embraces several paradigms like procedural,
object oriented, and functional programming, and offers powerful tools for parsing text.

is book is a work-in-progress. Even releases will contain some amount of TODO comments
prior to the printing of the book. We’ve le them in because they might serve as useful cues
for the reader as well as for us authors about what remains to be done. Even so, we pray the
reader’s indulgence and understanding.

1

Chapter 1 PREFACE

1.1 Audience

is book is primarily for people who want to learn Perl 6. It is a series of tutorials, not a
comprehensive reference. We expect some experience in another programming language,
though no prior knowledge of Perl is necessary. Aer working through this book, you
should have a solid grasp of the basics of Perl 6 sufficient to solve your own problems with
Perl 6.

1.2 Format of this book

Each chapter opens with a reasonably complete example that illustrates the topic of the
chapter. e example is meant to give an overall impression of how the chapter’s topic is
used in a real program. Following the example will be a detailed explanation of the code
as well as some insight into the techniques and idioms used. is is meant to convey the
“Ęavor” of writing Perl 6 programs so that the readermay proceed to write their own native
Perl 6 programs rather than programs that resemble some other language1.

1.3 Relationship between Perl 6 and Perl 5

Perl 6 is the newest member of the family of languages known as Perl. It represents a major
break in syntactic and semantic compatibility from Perl 5, thus the increase from 5 to 6.
However, this does not mean that Perl 5 is going away. In fact, quite the opposite. Both
Perl 5 and Perl 6 have active developer communities which mold the languages. Perl 5 de-
velopers try to extend the language in various ways while keeping backwards compatibility
with past versions of Perl. Perl 6 developers extend the language by adding new syntactic
and semantic features that enable more power and expressiveness without the restriction
of backward compatibility with Perl 5 or earlier versions.

1 Some programmers can still write Fortran in any language, however :)

2

Some might ask, “Why call it Perl if it’s a different language?” Perl is more than the va-
garies of syntax. Perl is philosophy (there’s more than one way to do it; easy things easy,
hard things possible); Perl is custom (comprehensive testing); Perl is architectural ediĕce
(the Comprehensive Perl Archive Network); and Perl is community (perl5-porters, perl6-
language). Both Perl 5 and Perl 6 share these attributes to varying degrees. As well, Perl is
syncretic. Just as Perl borrows good ideas from other languages, so Perl 5 and Perl 6 share
features.

1.4 Perl 6 implementations

Perl 6 is a speciĕcation. Any implementation that passes the official test suite can call itself
“Perl 6”. Several implementations exist at various levels of maturity. All of the examples
in this book will run with the Rakudo Perl 6 Compiler, but they are in no way speciĕc to
Rakudo–any sufficiently advanced Perl 6 implementation can run them. Good luck and–as
the Perl 6 community oen says–have fun!

1.5 Installing Rakudo

For complete instructions for downloading and installing Rakudo, see http://www.rakudo.
org/how-to-get-rakudo. Source code releases are available from http://github.com/rakudo/

rakudo/downloads. A binary release for windows is available from http://sourceforge.

net/projects/parrotwin32/files/.

3

http://www.rakudo.org/how-to-get-rakudo
http://www.rakudo.org/how-to-get-rakudo
http://github.com/rakudo/rakudo/downloads
http://github.com/rakudo/rakudo/downloads
http://sourceforge.net/projects/parrotwin32/files/
http://sourceforge.net/projects/parrotwin32/files/

Chapter 1 PREFACE

1.6 Executing programs

To run a Perl 6 program with Rakudo, include the install directory in your system PATH

variable and issue a command like:

$ perl6 hello.pl

If you invoke the Rakudo compiler without an explicit script to run, it enters a small inter-
active mode that allows Perl 6 statements to be executed from the command line.

1.7 Getting involved

If you are inspired by the contents of this book and want to contribute to the Perl 6 com-
munity, there are more resources available to you:

World Wide Web

e Perl 6 homepage is http://perl6.org/–it contains pointers to many useful re-
sources.

IRC

e channel #perl6 on irc.freenode.net discusses all things Perl 6.

Mailing lists

If you need programming help with Perl 6, send an email to perl6-users@perl.org.

For issues regarding thePerl 6 language speciĕcation contact perl6-language@perl.org.
For issues regarding Perl 6 compilers, send email to perl6-compiler@perl.org.

4

2
The Basics

Perl originated as a programming language intended to gather and summarize information
from text ĕles. It’s still strong in text processing, but Perl 5 is also a powerful general-
purpose programming language. Perl 6 is even better.

Suppose that you host a table tennis tournament. e referees tell you the results of each
game in the format Player 1 vs Player 2 | 3:2, which means that Player 1 won against
Player 2 by 3 to 2 sets. You need a script that sums up how many matches and sets each
player has won to determine the overall winner.

e input data looks like this:

1 Beth Ana Charlie Dave

2 Ana vs Dave | 3:0

3 Charlie vs Beth | 3:1

4 Ana vs Beth | 2:3

5 Dave vs Charlie | 3:0

5

Chapter 2 THE BASICS

6 Ana vs Charlie | 3:1

7 Beth vs Dave | 0:3

e ĕrst line is the list of players. Every subsequent line records a result of a match.

Here’s one way to solve that problem in Perl 6:

1 use v6;

2

3 my $file = open 'scores';

4 my @names = $file.get.split(' ');

5

6 my %matches;

7 my %sets;

8

9 for $file.lines -> $line {

10 my ($pairing, $result) = $line.split(' | ');

11 my ($p1, $p2) = $pairing.split(' vs ');

12 my ($r1, $r2) = $result.split(':');

13

14 %sets{$p1} += $r1;

15 %sets{$p2} += $r2;

16

17 if $r1 > $r2 {

18 %matches{$p1}++;

19 } else {

20 %matches{$p2}++;

21 }

22 }

23

24 my @sorted = @names.sort({ %sets{$_} }).sort({ %matches{$_} }).reverse;

25

26 for @sorted -> $n {

27 say "$n has won %matches{$n} matches and %sets{$n} sets";

28 }

is produces the output:

6

Ana has won 2 matches and 8 sets

Dave has won 2 matches and 6 sets

Charlie has won 1 matches and 4 sets

Beth has won 1 matches and 4 sets

Every Perl 6 program should begin with use v6;. is line tells the compiler which version
of Perl the program expects. Should you accidentally run the ĕle with Perl 5, you’ll get a
helpful error message.

A Perl 6 program consists of zero or more statements. A statement ends with a semicolon
or a curly bracket at the end of a line:

1 my $file = open 'scores';

my declares a lexical variable. Lexical variables are visible only in the current block. If there’s
no enclosing block, it’s visible throughout the remainder of the ĕle. A block is any part of
the code enclosed between curly braces { }.

A variable name begins with a sigil, which is non-alpha-numeric symbol such as $, @, %, or
&–or occasionally the double colon ::. e sigils usually restrict the variable to a particular
type, such as a single value or a compound value. Aer the sigil comes an identiĕer, which
may consist of letters, digits and the underscore. Between letters you can also use a dash -

or an apostrophe ', so isn't and double-click are valid identiĕers.

e $ sigil indicates a scalar variable, which indicates that the variable stores a single value.

e built-in function open opens a ĕle, here named scores, and returns a ĕle handle–an
object representing that ĕle. e equality sign = assigns that ĕle handle to the variable on
the le, which means that $file now stores the ĕle handle.

'scores' is a string literal. A string is a piece of text, and a string literal is a string which
appears directly in the program. In this line, it’s the argument provided to open.

1 my @names = $file.get.split(' ');

7

Chapter 2 THE BASICS

e right-hand side calls a method –a named group of behavior– named get on the ĕle
handle stored in $file. e get method reads and returns one line from the ĕle, removing
the line ending. split is also amethod, called on the string returned from get. split’s single
argument is a string containing a space character. split decomposes its invocant–the string
onwhich it operates–into a list of strings. It turns the single string 'Beth Ana Charlie Dave'

into the list of strings 'Beth', 'Ana', 'Charlie', 'Dave'. Finally, this list gets stored in
the array @names. e @ sigil marks the declared variable as an Array. Arrays store ordered
lists.

1 my %matches;

2 my %sets;

ese two lines of code declare two hashes. e c<%> sigil marks each variable as a Hash. A
Hash is an unordered collection of pairs of keys and values. Other programming languages
call that a hash table, dictionary, or map. You can query a hash table for the value that
corresponds to a certain $key with %hash{$key}1.

In the score counting program, %matches stores the number ofmatches each player has won.
%sets stores the number of sets each player has won.

Sigils indicate the default accessmethod for a variable. Variables with the @ sigil are accessed
positionally; variables with the % sigil are accessed by string key. e $ sigil, however, indi-
cates a general container that can hold anything and be accessed in any manner. A scalar
can even contain a compound object like an Array or a Hash; the $ sigil signiĕes that it
should be treated as a single value, even in a context that expects multiple values (as with
an Array or Hash).

1 for $file.lines -> $line {

2 ...

3 }

1 Unlike Perl 5, in Perl 6 the sigil does not change when accessing an array or hash with [] or { }. is is
called sigil invariance.

8

for produces a loop that runs the block delimited by curly brackets and containing ... once
for each item of the list, setting the variable $line to the current value of each iteration.
$file.lines produces a list of the lines read from the ĕle scores.

During the ĕrst iteration, $line will contain the string Ana vs Dave | 3:0. During the
second, Charlie vs Beth | 3:1, and so on.

1 my ($pairing, $result) = $line.split(' | ');

my can declare multiple variables simultaneously. e right-hand side of the assignment is
again a call to split, this time splitting on a vertical bar surrounded by spaces. $pairing

gets the ĕrst item of the returned list, and $result the second.

Aer processing the ĕrst line, $pairingwill hold the string Ana vs Dave and $result 3:0.

e next two lines follow the same pattern:

1 my ($p1, $p2) = $pairing.split(' vs ');

2 my ($r1, $r2) = $result.split(':');

e ĕrst extracts and stores the names of the two players in the variables $p1 and $p2. e
second extracts the results for each player and stores them in $r1 and $r2.

Aer processing the ĕrst line of the ĕle, the variables contain the values:

e program then counts the number of sets each player has won:

1 %sets{$p1} += $r1;

2 %sets{$p2} += $r2;

is is a shortcut for:

1 %sets{$p1} = %sets{$p1} + $r1;

2 %sets{$p2} = %sets{$p2} + $r2;

9

Chapter 2 THE BASICS

Table 2.1: Contents of Variables

Variable Contents
$line 'Ana vs Dave | 3:0'

$pairing 'Ana vs Dave'

$result '3:0'

$p1 'Ana'

$p2 'Dave'

$r1 '3'

$r2 '0'

+= $r1 means increase the value in the variable on the le by $r1. In the ĕrst iteration
%sets{$p1} is not yet set, so it defaults to a special value called Any. e addition and incre-
menting operators treat Any as a number with the value of zero.

Before these two lines execute, %sets is empty. Adding to an entry not in the hash will
cause that entry to spring into existence just-in-time, with a value starting at zero. (is is
autoviviĕcation). Aer these two lines have run for the ĕrst time, %sets contains 'Ana' =>

3, 'Dave' => 0. (e fat arrow => separates key and value in a Pair.)

1 if $r1 > $r2 {

2 %matches{$p1}++;

3 } else {

4 %matches{$p2}++;

5 }

If $r1 has a larger value than $r2, %matches{$p1} increments by one. If $r1 is not larger
than $r2, %matches{$p2} increments. Just as in the case of +=, if either hash value did not
exist previously, it is autoviviĕed by the increment operation.

$thing++ is short for $thing += 1 or $thing = $thing + 1, with the small exception that the
return value of the expression is $thing before the increment, not the incremented value. If,

10

as you can do in many other programming languages, you can use ++ as a preĕx, it returns
the incremented value; my $x = 1; say ++$x prints 2.

1 my @sorted = @names.sort({ %sets{$_} }).sort({ %matches{$_} }).reverse;

is line consists of three individually simple steps. An array’s sortmethod returns a sorted
version of the array’s contents. However, the default sort on an array sorts by its contents.
To print player names in winner-ĕrst order, the code must sort the array by the scores of the
players, not their names. e sortmethod’s argument is a block used to transform the array
elements (the names of players) to the data by which to sort. e array items are passed in
through the topic variable $.

You have seen blocks before: both the for loop -> $line { ... } and the if statement
worked on blocks. A block is a self-contained piece of Perl 6 codewith an optional signature
(the -> $line part). See signatures for more information.

e simplest way to sort the players by score would be @names.sort({ %matches{$ } }),
which sorts by number ofmatcheswon. HoweverAna andDave have bothwon twomatches.
at simple sort doesn’t account for the number of sets won, which is the secondary crite-
rion to decide who has won the tournament.

When two array items have the same value, sort leaves them in the same order as it found
them. Computer scientists call this a stable sort. e program takes advantage of this prop-
erty of Perl 6’s sort to achieve the goal by sorting twice: ĕrst by the number of sets won
(the secondary criterion), then by the number of matches won.

Aer the ĕrst sorting step, the names are in the order Beth Charlie Dave Ana. Aer the
second sorting step, it’s still the same, because no one has won fewer matches but more sets
than someone else. Such a situation is entirely possible, especially at larger tournaments.

sort sorts in ascending order, from smallest to largest. is is the opposite of the desired
order. erefore, the code calls the .reverse method on the result of the second sort, and
stores the ĕnal list in @sorted.

11

Chapter 2 THE BASICS

1 for @sorted -> $n {

2 say "$n has won %matches{$n} matches and %sets{$n} sets";

3 }

To print out the players and their scores, the code loops over @sorted, setting $n to the
name of each player in turn. Read this code as “For each element of sorted, set $n to the
element, then execute the contents of the following block.” say prints its arguments to the
standard output (the screen, normally), followed by a newline. (Use print if you don’t want
the newline at the end.)

When you run the program, you’ll see that say doesn’t print the contents of that string
verbatim. In place of $n it prints the contents of $n– the names of players stored in $n.
is automatic substitution of code with its contents is interpolation. is interpolation
happens only in strings delimited by double quotes "...". Single quoted strings '...' do
not interpolate:

1 my $names = 'things';

2 say 'Do not call me $names'; # Do not call me $names

3 say "Do not call me $names"; # Do not call me things

Double quoted strings in Perl 6 can interpolate variables with the $ sigil as well as blocks of
code in curly braces. Since any arbitrary Perl code can appear within curly braces, Arrays
and Hashes may be interpolated by placing them within curly braces2. Arrays within curly
braces are interpolated with a single space character between each item. Hashes within curly
braces are interpolated as a series of lines. Each line will contain a key, followed by a tab
character, then the value associated with that key, and ĕnally a newline.

1 say "Math: { 1 + 2 }" # Math: 3

2 my @people = <Luke Matthew Mark>;

3 say "The synoptics are: {@people}" # The synoptics are: Luke Matthew Mark

4

5 say "{%sets}"; # From the tennis tournament

2 ere is another interpolation method known as the zen slice. If an array name is followed by empty
subscripts within the double quoted string (i.e. say "@array[]";), then the array is interpolated as a
space separated list. Similarly, if a hash is followed by empty subscripts (i.e. say "%h{}") then the Hash is
interpolated as a space separated list of values. e keys of the Hash are not interpolated.

12

6

7 # Charlie 4

8 # Dave 6

9 # Ana 8

10 # Beth 4

2.1 Exercises

1. e input format of the example program is redundant: the ĕrst line containing the name
of all players is not necessary, because you can ĕnd out which players participated in the
tournament by looking at their names in the subsequent rows.

How can you change the program if the ĕrst input line is omitted? Hint: %hash.keys returns
a list of all keys stored in %hash.

Answer: Remove the line my @names = $file.get.split(' ');, and change:

1 my @sorted = @names.sort({ %sets{$_} }).sort({ %matches{$_} }).reverse;

... into:

1 my @sorted = %sets.keys.sort({ %sets{$_} }).sort({ %matches{$_} }).reverse;

2. Instead of removing the redundancy, you can also use it to warn if a player appears that
wasn’t mentioned in the ĕrst line, for example due to a typo. How would you modify your
program to achieve that?

Answer: Introduce another hash with the names of the legitimate players as keys, and look
in this hash when the name of a player is read:

1 ...

2 my @names = $file.get.split(' ');

3 my %legitimate-players;

13

Chapter 2 THE BASICS

4 for @names -> $n {

5 %legitimate-players{$n} = 1;

6 }

7

8 ...

9

10 for $file.lines -> $line {

11 my ($pairing, $result) = $line.split(' | ');

12 my ($p1, $p2) = $pairing.split(' vs ');

13 for $p1, $p2 -> $p {

14 if !%legitimate-players{$p} {

15 say "Warning: '$p' is not on our list!";

16 }

17 }

18

19 ...

20 }

14

3
Operators

Operators are very short names for oen used routines. ey have special calling syntax,
and can be manipulated by other operators.

Returning to the table tennis example, suppose youwant to plot the number of sets that each
player won in a tournament. is example uses the numbers from the previous chapter,
and makes a very simple text output by just printing a number of X characters to represent
horizontal bars.

1 use v6;

2

3 my @scores = 'Ana' => 8, 'Dave' => 6, 'Charlie' => 4, 'Beth' => 4;

4

5 my $screen-width = 30;

6

7 my $label-area-width = 1 + [max] @scores».key».chars;

8 my $max-score = [max] @scores».value;

15

Chapter 3 OPERATORS

9 my $unit = ($screen-width - $label-area-width) / $max-score;

10

11 for @scores {

12 my $format = '%- ' ~ $label-area-width ~ "s%s\n";
13 printf $format, .key, 'X' x ($unit * .value);

14 }

Output:

Ana XXXXXXXXXXXXXXXXXXXXXX

Dave XXXXXXXXXXXXXXXX

Charlie XXXXXXXXXXX

Beth XXXXXXXXXXX

e line

1 my @scores = 'Ana' => 8, 'Dave' => 6, 'Charlie' => 4, 'Beth' => 4;

already contains three different operators: =, => and ,.

e = operator is the assignment operator – it takes the values from the right-hand side, and
stores them in the variable on the le-hand side, here @scores.

Like other languages that have adopted a similar syntax to C, Perl 6 allows for a
shorthand way to write certain assignments. Any assignment of the form $var =

$var op EXPR can be expressed as $var op= EXPR. So, for instance, ~ (tilde) is the
string concatenation operator; to append some text to the end of a string, you could
say $string ~= "text" which is equivalent to $string = $string ~"text".

e => operator (the fat arrow) constructs Pair objects. A Pair stores a key and a value; the
key is on the le-hand side of the => operator, the value on the right. It also has a specialty:
if the key on the le is a bare identiĕer, it is taken to be a string. So one could also write the
example above as

16

1 my @scores = Ana => 8, Dave => 6, Charlie => 4, Beth => 4;

Finally, the , operator constructs a Parcel, which is a sequence of objects. In this case the
objects are pairs.

All of the three operators above are inĕx operators, which means they stand in between
two terms. A term can be a literal like 8 or 'Dave', or a combination of other terms and
operators.

e previous chapter already used other types of operators, too. It contained the statement
%games{$p1}++;which uses the postcircumĕx operator {...}. It stands behind (post) a term,
and consists of two symbols (an opening and a closing curly bracket) which enclose (cir-
cumĕx) another term. Behind this postcircumĕx operator is an ordinary postĕx operator
with name ++, which increments the value it qualiĕes. No whitespace is allowed between a
term and its postĕx or postcircumĕx operators.

Yet another operator type is the preĕx operator, which stands in front of a term. An example
is the - operator, which negates the following numeric value, as in my $x = -4.

But the - operator can also mean subtraction, so say 5 - 4will print a 1. To distinguish the
preĕx operator - from the inĕx operator -, the Perl 6 parser always keeps track of whether
it expects an inĕx operator or a term. A term can have zero or more preĕx operators, so
you can actually write say 4 + -5. Aer the + (an inĕx operator), the compiler expects a
term, thus the - is interpreted as a preĕx operator to the term 5.

e next line containing new features is

1 my $label-area-width = 1 + [max] @scores».key».chars;

It begins harmlessly with a variable declaration my $label-area-width and an assignment
to it. Next comes a simple numeric addition, 1 + e right side of the + operator is
more complicated.

17

Chapter 3 OPERATORS

In Perl 6 there is an inĕx max operator which returns the greater of two values, so 2 max 3

returns 3. Square brackets around an inĕx operator indicate that it is applied to a list piece
by piece. So [max] 1, 5, 3, 7 is the same as 1 max 5 max 3 max 7 and evaluates to 7.

Likewise, you can write [+] to get the sum of a list of values, [*] for the product, and use
[<=] to check if a list is ordered by ascending values.

Aer the [max] you see the expression @scores».key».chars. Just like @variable.method

calls a method on @variable, @array».method calls a method for each item in @array, and
returns the list of the return values.

» is called a hyper operator. It is a unicode character that can be entered on most computers
1 If your operating system does not make it easy to write it you can also write it using two
angle brackets (>>).

So @scores».key is a list of all the keys of the pair objects in @scores, and @scores».key».chars

is a list of the length of all keys in @scores.

e expression [max] @scores».key».chars gives the largest of these values. It is the same
as

1 @scores[0].key.chars

2 max @scores[1].key.chars

3 max @scores[2].key.chars

4 max ...

e square brackets are called the reduction meta operator: it transforms the enclosed inĕx
operator into an operator that expects a list (a listop), and carries out the operation between
each two consecutive list items.

For plotting the names of the players and bar charts, the program needs to know how much
space to allocate for the player names. Adding 1 to it leaves space for a single blank space
between the name of the longest player and the le edge of the bars.

1 Ubuntu 10.4: In System/Preferences/Keyboard/Layouts/Options/Compose Key position select on of the
keys to be the “Compose” key. en press Compose-key and the “greater than” key twice.

18

1 my $max-score = [max] @scores».value;

With this line the program determines themaximum score. e drawing area has the width
$screen-width - $label-area-width, so for each score we can print

1 my $unit = ($screen-width - $label-area-width) / $max-score;

amount of X characters. is expression uses the inĕx operators - and / for numerical
calculations.

Now all the necessary informations are in place and the chart can be printed:

1 for @scores {

2 my $format = '%- ' ~ $label-area-width ~ "s%s\n";
3 printf $format, .key, 'X' x ($unit * .value);

4 }

ese lines loop over the items in @scores, binding them to the special variable $ one at a
time. For each such item, the program uses the printf built-in function to print both the
name of the player and a bar.

It is similar to printf functions of the C and Perl 5 programming languages. It takes a
format string, which speciĕes how to print the following parameters. If $label-area-width
is 8, the format string is "%- 8s%s\n", which means a string ('s') ĕlled to 8 spaces (' 8')
and le-justiĕed ('-'), followed by another string and a newline.

e ĕrst string is the name of the player, the second is the bar.

e bar is generated with the inĕx x operator, the repetition operator. It takes a string on the
le-hand side and a number on the right-hand side, and sticks the strings together as many
times as the number speciĕes. So 'ab' x 3 returns the string 'ababab'. .value returns the
value of the current pair, ($unit * .value) multiplies that values with $unit, and 'X' x

($unit * .value) returns as that many X characters.

19

Chapter 3 OPERATORS

3.1 A Word on Precedence

e explanations of the example above have one implication, which was not yet explicitly
mentioned. In the line

1 my @scores = 'Ana' => 8, 'Dave' => 6, 'Charlie' => 4, 'Beth' => 4;

e right-hand side of the assignment produces a list (because of the , operator) that is
made of pairs (because of =>), and the result is then assigned to the array variable. But you
could think of other ways that Perl 6 interprets this program. If you pass this line to the
Perl 5 interpreter, it parses it as

1 (my @scores = 'Ana') => 8, 'Dave' => 6, 'Charlie' => 4, 'Beth' => 4;

and thus stores only one item in the variable @scores, the rest is parsed as a list2.

e ways in which this statement is parsed in Perl 6 is governed by precedence rules. For
example, they state that the inĕx => operator binds its arguments tighter than the inĕx ,

operator, which in turn binds tighter than the = assignment operator3.

eprecedence rules for Perl 6 allowmany commonly used idioms to be expressed naturally
and without any parentheses, or even without thinking about precedence. If you want to
force a different way of parsing, parentheses can be used around an expression. en this
parenthesis group has the tightest possible precedence.

1 say 5 - 7 / 2; # 5 - 3.5 = 1.5

2 say (5 - 7) / 2; # (-2) / 2 = -1

2 and discarded, because it is not stored in any variable
3 ere are actually two assignment operators with different precedence. When the right-hand side is a

scalar, the item assignment operator with tight precedence is used, otherwise the loose-precedence list
assignment operator is used. is allows the two expressions $a = 1, $b = 2 and @a = 1, 2 to both mean
something sensible: assignment to two variables in a list, and assignment of a two-item list to a single
variable

20

3.2 Comparisons and Smart Matching

ere are several ways to compare objects in Perl. You can test for value equivalence us-
ing the === inĕx operator. For immutable objects4, this is an ordinary value comparison.
"hello" === "hello" is true because both strings are immutable and have the same value.

Formutable objects, === compares their identities. Two objects only share the same identity
if, in fact, they are the same object. In the following example, the two arrays @a and @b, while
they contain the same values, are two separate array objects which have different identities
and are thus not equivalent under ===.

1 my @a = 1, 2, 3;

2 my @b = 1, 2, 3;

3

4 say @a === @a; # 1

5 say @a === @b; # 0

6

7 # these use identity for value

8

9 say 3 === 3; # 1

10 say 'a' === 'a'; # 1

11

12 my $a = 'a';

13 say $a === 'a'; # 1

14

e eqv operator returns True only if two objects are of the same type, and of the same
structure. With the variables deĕned above, @a eqv @b is true because @a and @b contain the
same values each. On the other hand '2' eqv 2 returns False, because the le argument is
a string, the right an integer and so they are not of the same type.

TODO clarify “same structure”

4 Objects whose value can not be changed; a literal value. For instance, the literal 7 will always and forever
be just a 7.

21

Chapter 3 OPERATORS

3.2.1 Numeric Comparisons

You can ask if two objects have the same numeric value with the == inĕx operator. If one
of the objects is not numeric, Perl will do its best to make it numeric before doing the
comparison. If there is no good way to convert an object to a number, the default of 0 is
assumed.

1 say 1 == 1.0; # 1

2 say 1 == '1'; # 1

3 say 1 == '2'; # 0

4 say 3 == '3b' # 1

eoperators <, <=, >= and > can be used to compare the relative size of numbers, != returns
True if the two objects differ in their numerical value.

When you use an array or list as a number, it evaluates to the number of items in that list.

1 my @colors = <red blue green>;

2

3 if @colors == 3 {

4 say "It's true, @colors contains 3 items";

5 }

3.2.2 String Comparisons

Just like == converts its arguments to numbers before comparing, eq as an inĕx operator
compares for string equality, and converts its arguments to strings if necessary.

1 if $greeting eq 'hello' {

2 say 'welcome';

3 }

Other operators compare strings lexicographically

22

Number Comparison String Comparison Stands for
== eq equals
!= ne not equal
!== !eq not equal
< lt less than
<= le less or equal
> gt greater than
>= ge greater or equal

For example 'a' lt 'b' is true, and likewise 'a' lt 'aa'.

Three-way Comparison

e three-way comparison operators take two operands, and return Order::Increase if the
le is smaller, Order::Same when both are equal, and Order::Decrease if the right operand
is smaller5. For numbers that operator is spelled <=>, and for strings leg (from lesser, equal,
greater). e inĕx cmp operator is a type sensitive three-way comparison operator, and
compares numbers like <=>, string like leg, and for example pairs ĕrst by key, and then by
values if the keys are identical.

1 say 10 <=> 5; # +1

2 say 10 leg 5; # because '1' lt '5'

3 say 'ab' leg 'a'; # +1, lexicographic comparison

A typical use case for three-way comparison is sorting. e sort method in lists can take
a block or function that takes two values, compares them, and returns a value less than,
equal to or, greater than 0. e sort method then orders the values according to that return
value.

5 Order::Increase, Order::Same, and Order::Decrease are enumerations (enums) which are further ex-
plained in subtypes

23

Chapter 3 OPERATORS

1 say ~<abstract Concrete>.sort;

2 # output: Concrete abstract

3

4 say ~<abstract Concrete>.sort:

5 -> $a, $b { uc($a) leg uc($b) };

6 # output: abstract Concrete

e default comparison is case sensitive; by comparing not the values, but their upper case
variant, the example above sorts case insensitively.

3.2.3 Smart Matching

e various comparison operators that we have seen so far all coerce their arguments to
certain types before comparing them. is is useful if you wish to be very speciĕc about
what kind of comparison you want and are unsure of the types of the things that are being
compared. Perl 6 also provides another operator that allows you to perform comparisons
that just Do e Right ing. It’s ~~, the smart match operator.

1 if $pints-drunk ~~ 8 {

2 say "Go home, you've had enough!";

3 }

4

5 if $country ~~ 'Sweden' {

6 say "Meatballs with lingonberries and potato moose, please."

7 }

8

9 unless $group-size ~~ 2..4 {

10 say "You must have between 2 and 4 people to book this tour.";

11 }

e smart match operator always decides what kind of comparision to do based upon the
type of the value on the right hand side. In the three examples above, it would do a numeric,
a string and a range comparision respectively. While we’ve already seen operators to do
numeric and string comparisons – == and eq – there is no operator for comparing ranges.

24

is is part of the power of smart matching: more complex types can deĕne interesting and
useful ways to compare themselves to other things.

Smartmatch works by calling the ACCEPTSmethod on the operand on the right hand
side and passing it the operand on the le hand side as an argument. us $answer
~~ 42 actually desugars to a method call like 42.ACCEPTS($answer). e upshot of
this is that – aer reading the chapter on writing classes and methods – you too
will be able to write things that can be smart-match against just by implementing
an ACCEPTS method to do the right thing.

TODO: explain ’desugars’ terminology

TODO: add := operator as that’s used in subs-n-sigs.pod

25

4
Subs and Signatures

A subroutine is a piece of code that performs a speciĕc task. It may operate on provided
data (arguments) and may produce results (return values). e signature of a subroutine is
a description of any arguments it takes and any return values it produces.

e ĕrst chapter demonstrated simple subroutines. In one sense, the operators described
in the second chapter are also subroutines that Perl 6 parses in interesting ways. However,
they only scratch the surface of what’s possible.

4.1 Declaring A Subroutine

A subroutine declaration consists of several parts. First, the subroutine declarator sub in-
dicates that you are starting a subroutine declaration. Next comes an optional name and an

27

Chapter 4 SUBS AND SIGNATURES

optional signature. e body of the sub follows as a block of code enclosed in curly braces.
is is what will execute every time the subroutine is called.

For example, in:

1 sub panic() {

2 say "Oh no! Something has gone most terribly wrong!";

3 }

... the name of the sub is panic. Its signature is empty. Its body consists of a single say

statement.

By default, subroutines are lexically scoped, just like any variable declared with my. is
means that a subroutine may only be called within the scope in which it was declared. Use
the scope declarator our to make the subroutine available globally within the current pack-
age:

TODO: clarify “globally within the current package”. It’s confusing/ambiguous.

1 {

2 our sub eat() {

3 say "om nom nom";

4 }

5

6 sub drink() {

7 say "glug glug";

8 }

9 }

10

11 eat(); # om nom nom

12 drink(); # fails, can't drink outside of the block

You may also export (exporting) a subroutine to make it available to another scope.

Perl 6 subroutines are objects. You can pass them around and store them in data structures
just as you can do with any other piece of data. Programming language designers oen call

28

these ĕrst-class subroutines; they are as fundamental to and usable from the language as are
hashes or arrays.

First-class subroutines can help you solve complex problems. For example, to make a little
ASCII art dancing ĕgure, you could build up a hash where the keys are names of the dance
moves, and the values are anonymous subroutines. Assume that users should be able to
enter a list of moves (perhaps on a dance pad or other exotic input device). How can you
maintain a variable list of custom behaviors, allow user input, and restrict that input to a
safe set of behaviors?

TODO this example doesn’t seem like a good one for ĕrst-class subs.

1 my $dance = '';

2 my %moves =

3 hands-over-head => sub { $dance ~= '/o\ ' },

4 bird-arms => sub { $dance ~= '|/o\| ' },

5 left => sub { $dance ~= '>o ' },

6 right => sub { $dance ~= 'o< ' },

7 arms-up => sub { $dance ~= '\o/ ' };

8

9 my @awesome-dance = <arms-up bird-arms right hands-over-head>;

10

11 for @awesome-dance -> $move {

12 %moves{$move}.();

13 }

14

15 say $dance;

From the output of this program, you can observe that doing the YMCA dance in ASCII
art looks just as bad as in real life.

29

Chapter 4 SUBS AND SIGNATURES

4.2 Adding Signatures

A subroutine signature performs two tasks. First, it declares the arguments which callers
may or must pass to the subroutine. Second, it declares the variables in the subroutine to
which the arguments are bound. ese variables are called parameters. Perl 6 signatures
go further; they allow you to constrain the values of arguments and to match against and
extract parts of complex data structures.

TODO A third task: specifying a return type.

4.2.1 The Basics

In its simplest form, a signature is a comma separated list of variable names to which to
bind incoming arguments.

1 sub order-beer($type, $pints) {

2 say ($pints == 1 ?? 'A pint' !! "$pints pints") ~ " of $type, please."

3 }

4

5 order-beer('Hobgoblin', 1); # A pint of Hobgoblin, please.

6 order-beer('Zlatý Bažant', 3); # 3 pints of Zlatý Bažant, please.

e use of the term bound instead of assigned is signiĕcant. e variables in your signature
are read-only references to the passed arguments. You cannot modify passed-in values
within the subroutine.

If read-only binding is too limiting, you can relax this restriction. A parameter marked
is rw means that you can modify the passed argument within the subroutine. Any mod-
iĕcation will modify the original in place. If you attempt to pass a literal or some other
constant value for an rw parameter, the binding will fail at the point of the call, throwing an
exception:

30

1 sub make-it-more-so($it is rw) {

2 $it ~= substr($it, $it.chars - 1) x 5;

3 }

4

5 my $happy = "yay!";

6 make-it-more-so($happy);

7 say $happy; # yay!!!!!!

8 make-it-more-so("uh-oh"); # Fails; can't modify a constant

If, instead, you want your own copy of the argument to work with inside the subroutine–to
leave the original untouched–mark the parameter is copy:

1 sub say-it-one-higher($it is copy) {

2 $it++;

3 say $it;

4 }

5

6 my $unanswer = 41;

7 say-it-one-higher($unanswer); # 42

8 say-it-one-higher(41); # 42

eextra verbosity ofmarking parameters asmutablemay seem excessive, but it’s likely you
won’t use these modiĕers oen. While certain languages require you tomark parameters as
rw to emulate returning multiple results from a single subroutine, Perl allows you to return
multiple values directly.

4.2.2 Passing Arrays, Hashes and Code

Avariable’s sigil indicates its intended use. In a signature, a variable’s sigil acts as a constraint
on the type of argument passed. e @ sigil, for example, checks that the passed value does
the Positional role. Failing to pass something that matches this constraint will cause the
call to fail.

TODO: note the forward reference to roles and/or Positional.

31

Chapter 4 SUBS AND SIGNATURES

1 sub shout-them(@words) {

2 for @words -> $w {

3 print uc("$w ");

4 }

5 }

6

7 my @last_words = <do not want>;

8 shout-them(@last_words); # DO NOT WANT

9 shout-them('help'); # Fails; a string is not iterable

Similarly, the % sigil implies that the callermust pass something that is Associative–something
which allows indexing through the <...> or {...} operations. e & sigil requires that the
caller pass something callable, such as an anonymous subroutine. In that case, you may
also call the callable parameter without the & sigil:

1 sub do-it-lots(&it, $how-many-times) {

2 for 1..$how-many-times {

3 it();

4 }

5 }

6

7 do-it-lots(sub { say "Eating a stroopwafel" }, 10);

A scalar (the $ sigil) implies no constraints. Anything may bind to it, even if it could also
bind to one of the other sigils.

4.2.3 Interpolating Arrays and Hashes

Sometimes youwant to ĕll positional arguments froman array. Instead ofwriting eat(@food[0],
@food[1], @food[2], ...) and so on, you can Ęatten them into the argument list by
prepending a vertical bar: eat(|@food).

Likewise, you can interpolate hashes into named arguments:

32

1 sub order-shrimps($number, $from) {

2 say "I'd like $count pieces of shrimp from the $from, please";

3 }

4

5 my %user-preferences = (from => 'Northern Sea');

6 order-shrimps(3, |%user-preferences)

4.2.4 Optional Parameters

Sometimes, passing an argument may be unnecessary. Other parameters can have sensible
default values. In these cases, it is possible to mark such parameters as optional, so those
calling the subroutine can choose whether to pass an argument.

Either assign a default value to the parameter in the signature:

1 sub order-steak($how = 'medium') {

2 say "I'd like a steak, $how";

3 }

4

5 order-steak();

6 order-steak('well done');

... or append a question mark to the parameter’s name, in which case the parameter binds
to an undeĕned value if no argument is passed:

1 sub order-burger($type, $side?) {

2 say "I'd like a $type burger" ~

3 (defined($side) ?? " with a side of $side" !! "");

4 }

5

6 order-burger("triple bacon", "deep fried onion rings");

33

Chapter 4 SUBS AND SIGNATURES

4.2.5 Named Parameters

When a subroutine has many parameters, it is oen easier to pass parameters by name
instead of trying to remember the correct order of parameters. Note that when you do so,
the order in which they appear as arguments does not matter:

1 sub order-beer($type, $pints) {

2 say ($pints == 1 ?? 'A pint' !! "$pints pints") ~ " of $type, please."

3 }

4

5 order-beer(type => 'Hobgoblin', pints => 1);

6 # A pint of Hobgoblin, please.

7

8 order-beer(pints => 3, type => 'Zlatý Bažant');

9 # 3 pints of Zlatý Bažant, please.

You may also specify that an incoming argument may only ĕll a parameter when passed by
name, such that no positional argument may successfully bind to it. To do this, precede the
name of the parameter with a colon:

1 sub order-shrimps($count, :$from = 'North Sea') {

2 say "I'd like $count pieces of shrimp from the $from, please";

3 }

4

5 order-shrimps(6); # takes 'North Sea'

6 order-shrimps(4, from => 'Atlantic Ocean');

7 order-shrimps(22, 'Mediterranean Sea'); # not allowed, :$from is named only

Unlike positional parameters, named parameters are optional by default. Appending a !

makes it mandatory.

1 sub design-ice-cream-mixture(:$name!, $base = 'Vanilla') {

2 say "Creating a new recipe named $name!"

3 }

4

34

5 design-ice-cream-mixture(name => 'Plain');

6 design-ice-cream-mixture(base => 'Strawberry chip'); # missing $name

Renaming Parameters

Because you must use their names when passing named parameters, parameter names are
part of a subroutine’s public API. Choose them carefully! Sometimes it may be convenient
to expose a parameter with one name while binding to a variable of a different name:

1 sub announce-time(:dinner($supper) = '8pm') {

2 say "We eat dinner at $supper";

3 }

4

5 announce-time(dinner => '9pm'); # We eat dinner at 9pm

Parameters can also have multiple names. If some of your users are British and others are
Americans, you might write:

1 sub paint-rectangle(

2 :$x = 0,

3 :$y = 0,

4 :$width = 100,

5 :$height = 50,

6 :color(:colour($c))) {

7

8 # print a piece of SVG that reprents a rectangle

9 say qq[<rect x="$x" y="$y" width="$width" height="$height"

10 style="fill: $c" />]

11 }

12

13 # both calls work the same

14 paint-rectangle :color<Blue>;

15 paint-rectangle :colour<Blue>;

16

35

Chapter 4 SUBS AND SIGNATURES

17 # of course you can still fill the other options

18 paint-rectangle :width(30), :height(10), :colour<Blue>;

Alternative Named Argument Syntaxes

Named arguments are actually Pairs (of keys and values). ere are multiple ways to write
Pairs. e difference between the approaches is primarily one of clarity, as each alternative
provides a different quoting mechanism. ese three calls all mean the same thing:

1 announce-time(dinner => '9pm');

2 announce-time(:dinner('9pm'));

3 announce-time(:dinner<9pm>);

If you’re passing a boolean value, you may omit the value portion of the pair:

1 toggle-blender(:enabled); # enables the blender

2 toggle-blender(:!enabled); # disables the blender

A named argument of the form :name with no value has an implicit value of Bool::True.
e negated form of this, :!name, has an implicit value of Bool::False.

If you use a variable to create a pair, you can reuse the variable name as the key of the pair.

1 my $dinner = '9pm';

2 announce-dinner :$dinner; # same as dinner => $dinner;

pair forms lists possible Pair forms and their meanings.

You can use any of these forms in any context where you can use a Pair object. For example,
when populating a hash:

1 # TODO: better example

2 my $black = 12;

36

Table 4.1: C<Pair> forms and their meanings

Shorthand Long form Description
:allowed allowed => Bool::True Boolean Ęag
:!allowed allowed => Bool::False Boolean Ęag
:bev<tea coffee> bev => ('tee', 'coffee') List
:times[1, 3] times => [1, 3] Array
:opts{ a => 2 } opts => { a => 2 } Hash
:$var var => $var Scalar variable
:@var var => @var Array variable
:%var var => %var Hash variable

3 my %color-popularities = :$black, :blue(8),

4 red => 18, :white<0>;

Finally, to pass an existing Pair object to a subroutine by position, not name, either put it in
parentheses (like (:$thing)), or use the => operator with a quoted string on the le-hand
side: "thing" => $thing.

4.2.6 Slurpy Parameters

In an earlier example the function shout-it accepted an array argument. is prevented
users from passing in a single argument. To enable both possibilities, or to allow multiple
positional arguments and even multiple array arguments all of which will Ęatten into a
single array parameter in the subroutine, prepend the slurpy preĕx (*) to the parameter
name:

1 sub shout-them(*@words) {

2 for @words -> $w {

3 print uc("$w ");

4 }

5 }

37

Chapter 4 SUBS AND SIGNATURES

6

7 # now you can pass items

8 shout-them('go'); # GO

9 shout-them('go', 'home'); # GO HOME

10

11 my @words = ('go', 'home');

12 shout-them(@words); # still works

A slurpy parameter–a parameter preceded by an asterisk (*)–stores all remaining unbound
positional arguments in an array. Likewise, *%hash slurps all the remaining unboundnamed
arguments into a hash.

Slurpy arrays and hashes allow you to pass all positional and named arguments to another
routine:

1 sub debug-wrapper(&code, *@positional, *%named) {

2 warn "Calling '&code.name()' with arguments "

3 ~ "@positional.perl(), %named.perl()\n";
4 code(|@positional, |%named);

5 warn "... back from '&code.name()'\n";
6 }

7

8 debug-wrapper(&order-shrimps, 4, from => 'Atlantic Ocean');

4.3 Returning Results

Subroutines can also return values. e ASCII art dancing example from earlier in this
chapter is simpler when each subroutine returns a new string:

1 my %moves =

2 hands-over-head => sub { return '/o\ ' },

3 bird-arms => sub { return '|/o\| ' },

4 left => sub { return '>o ' },

5 right => sub { return 'o< ' },

38

6 arms-up => sub { return '\o/ ' };

7

8 my @awesome-dance = <arms-up bird-arms right hands-over-head>;

9

10 for @awesome-dance -> $move {

11 print %moves{$move}.();

12 }

13

14 print "\n";

A Perl subroutine can return multiple values:

1 sub menu {

2 if rand < 0.5 {

3 return ('fish', 'white wine')

4 } else {

5 return ('steak', 'red wine');

6 }

7 }

8

9 my ($food, $beverage) = menu();

If you exclude the return statement, Perl will return the value produced by the last statement
run inside the subroutine. is simpliĕes the previous example:

1 sub menu {

2 if rand < 0.5 {

3 'fish', 'white wine'

4 } else {

5 'steak', 'red wine';

6 }

7 }

8

9 my ($food, $beverage) = menu();

39

Chapter 4 SUBS AND SIGNATURES

Be wary of relying on this: when the Ęow of control within a subroutine is sufficiently com-
plex, adding an explicit return will clarify the code. As a general rule, only the simplest
subroutines beneĕt from implicit return.

return has the additional effect of immediately exiting the subroutine:

1 sub create-world(*%characteristics) {

2 my $world = World.new(%characteristics);

3 return $world if %characteristics<temporary>;

4

5 save-world($world);

6 }

... and you’d better not misplace your new $world if it’s temporary, as it’s the only one you’re
going to get.

4.4 Working With Types

Many subroutines cannotmeaningfullyworkwith arbitrary parameters, but require that the
parameters support certainmethods or have other properties. In these cases, it makes sense
to restrict the types of parameters, such that attempts to pass incorrect values as arguments
will cause Perl to raise an error at the time of calling the subroutine.

4.4.1 Basic Types

e easiest way to restrict the possible values that a subroutine accepts is by writing a type
name before a parameter. For example, a subroutine that performs numeric calculations on
its parameters could require that its arguments are of the type Numeric:

1 sub mean(Numeric $a, Numeric $b) {

2 return ($a + $b) / 2;

3 }

40

4

5 say mean 2.5, 1.5;

6 say mean 'some', 'strings';

is produces the output:

2

Nominal type check failed for parameter '$a';

expected Numeric but got Str instead

If multiple parameters have type constraints, each argument must fulĕll the type constraint
of the parameter to which it binds.

4.4.2 Adding Constraints

Sometimes a type name is insufficient to describe the requirements for an argument. In this
case, you may add an additional constraint to the parameter with a where block:

1 sub circle-radius-from-area(Numeric $area where { $area >= 0 }) {

2 ($area / pi).sqrt

3 }

4

5 say circle-radius-from-area(3); # OK

6 say circle-radius-from-area(-3); # Error

Because the calculation is meaningful only for non-negative area values, the parameter in-
cludes a constraint which returns True for non-negative values. If this constraint returns a
false value, the type check will fail when something calls this subroutine.

e block aer the where optional; Perl performs the check by smartmatching the argument
against whatever follows the where. It is possible to accept arguments in a certain range by
writing:

41

Chapter 4 SUBS AND SIGNATURES

1 sub set-volume(Numeric $volume where 0..11) {

2 say "Turning it up to $volume";

3 }

To constrain arguments to those existing keys of a hash:

1 my %in-stock = 'Staropramen' => 8, 'Mori' => 5, 'La Trappe' => 9;

2

3 sub order-beer(Str $name where %in-stock) {

4 say "Here's your $name";

5 %in-stock{$name}--;

6 if %in-stock{$name} == 0 {

7 say "OH NO! That was the last $name, folks! :'(";

8 %in-stock.delete($name);

9 }

10 }

4.5 Captures

In one sense, a signature is a collection of parameters. Captures ĕll the same niche for
arguments. Just as you rarely think of a signature as a whole–instead focusing on individual
parameters–you rarely have to think about captures. When you do, Perl 6 allows you to
manipulate captures directly.

Captures have both positional and named parts which act like lists and hashes, respectively.
e list-like parts contain positional arguments and the hash-like parts contain named ar-
guments.

42

4.5.1 Creating And Using A Capture

To build a capture, use the \(...) syntax. Like arrays and hashes, you can interpolate a
capture into an argument by using |:

1 sub act($left, $right, :$action) {

2 $action($left, $right);

3 }

4

5 my @tasks = \(39, 3, action => { say $^a + $^b }),

6 \(6, 7, action => { say $^a * $^b });

7

8 for @tasks -> $task-args {

9 act(|$task-args);

10 }

is program creates an array of captures, each of which contains two positional arguments
and one named argument. It then iterates over the array, making a call to act with each
argument set. Perl 6 allows you to specify the arguments for a call and the call itself sep-
arately, so as to apply the same arguments over many calls, or the same call to many sets
of arguments. e code that performs the application need not know whether any of the
arguments are named or positional.

Unlike signatures, captures work like references. Any variablementioned in a capture exists
in the capture as a reference to the variable. us rw parameters still work with captures
involved.

1 my $value = 7;

2 my $to-change = \($value);
3

4 sub double($x is rw) {

5 $x *= 2;

6 }

7

8 sub triple($x is rw) {

9 $x *= 3;

43

Chapter 4 SUBS AND SIGNATURES

10 }

11

12 triple(|$to-change);

13 double(|$to-change);

14

15 say $value; # 42

Perl types with both positional and named parts also show up in various other situations.
For example, regex matches have both positional and named matches–Match objects them-
selves are a type of capture. It’s also possible to conceive of an XML node type that is a type
of capture, with named attributes and positional children. Binding this node to a function
could use the appropriate parameter syntax to work with various children and attributes.

4.5.2 Captures In Signatures

All calls build a capture on the caller side and unpack it according to the signature on the
callee side1. It is also possible to write a signature that binds the capture itself into a variable.
is is especially useful for writing routines that delegate to other routines with the same
arguments.

1 sub visit-czechoslovakia(|$plan) {

2 warn "Sorry, this country has been deprecated.";

3 visit-slovakia(|$plan);

4 visit-czech-republic(|$plan);

5 }

e beneĕt of using this over a signature like :(*@pos, *%named) is that these both enforce
some context on the arguments, which may be premature. For example, if the caller passes
two arrays, they would Ęatten into @pos. is means that the two nested arrays could not be
recovered at the point of delegation. A capture preserves the two array arguments, so that
the ĕnal callee’s signature may determine how to bind them.

1 An optimizing Perl 6 compiler may, of course, be able to optimize away part or all of this process, depend-
ing on what it knows at compilation time.

44

4.6 Unpacking

Sometimes you need to work with only part of an array or a hash. You can do that with
ordinary slicing access, or you can use signature binding:

1 sub first-is-largest(@a) {

2 my $first = @a.shift;

3 # TODO: either explain junctions, or find a

4 # concise way to write without them

5 return $first >= all(@a);

6 }

7

8 # same thing:

9 sub first-is-largest(@a) {

10 my :($first, *@rest) := \(|@a)
11 return $first >= all(@rest);

12 }

e signature binding approach might seem clumsy, but when you use it in the main sig-
nature of a subroutine, you get tremendous power:

1 sub first-is-largest([$first, *@rest]) {

2 return $first >= all(@rest);

3 }

e brackets in the signature tell the compiler to expect a list-like argument. Instead of
binding to an array parameter, it instead unpacks its arguments into several parameters–in
this case, a scalar for the ĕrst element and an array for the rest. is subsignature also acts
as a constraint on the array parameter: the signature binding will fail unless the list in the
capture contains at least one item.

Likewise you can unpack a hash by using %(...) instead of square brackets, but you must
access named parameters instead of positional.

45

Chapter 4 SUBS AND SIGNATURES

1 sub create-world(%(:$temporary, *%characteristics)) {

2 my $world = World.new(%characteristics);

3 return $world if $temporary;

4

5 save-world($world);

6 }

TODO: come up with a good example

TODO: generic object unpacking

4.7 Currying

Consider a module that provided the example from the “Optional Parameters” section:

1 sub order-burger($type, $side?) { ... };

If you used order-burger repeatedly, but oen with a side of french fries, you might wish
that the author had also provided a order-burger-and-fries sub. You could easily write it
yourself:

1 sub order-burger-and-fries ($type) {

2 order-burger($type, side => 'french fries');

3 }

If your personal order is always vegetarian, you might instead wish for a order-the-usual

sub. is is less concise to write, due to the optional second parameter:

1 sub order-the-usual ($side?) {

2 if ($side.defined) {

3 order-burger('veggie', $side);

4 }

5 else {

46

6 order-burger('veggie');

7 }

8 }

Currying gives you a shortcut for these exact cases; it creates a new sub from an existing
sub, with parameters already ĕlled in. In Perl 6, curry with the .assuming method:

1 &order-the-usual := &order-burger.assuming('veggie');

2 &order-burger-and-fries := &order-burger.assuming(side => 'french fries');

enew sub is like any other sub, andworkswith all the various parameter-passing schemes
already described.

1 order-the-usual('salsa');

2 order-the-usual(side => 'broccoli');

3

4 order-burger-and-fries('plain');

5 order-burger-and-fries(:type<<double-beef>>);

4.8 Introspection

Subroutines and their signatures are objects like any other. Besides calling them, you can
learn things about them, including the details of their parameters:

1 sub logarithm(Numeric $x, Numeric :$base = exp(1)) {

2 log($x) / log($base);

3 }

4

5 my @params = &logarithm.signature.params;

6 say @params.elems, ' parameters';

7

8 for @params {

9 say "Name: ", .name;

10 say " Type: ", .type;

47

Chapter 4 SUBS AND SIGNATURES

11 say " named? ", .named ?? 'yes' !! 'no';

12 say " slurpy? ", .slurpy ?? 'yes' !! 'no';

13 say " optional? ", .optional ?? 'yes' !! 'no';

14 }

2 parameters

Name: $x

Type: Numeric()

named? no

slurpy? no

optional? no

Name: $base

Type: Numeric()

named? yes

slurpy? no

optional? yes

e & sigil followed by a subroutine name gets the object representing that subroutine. &log-
arithm.signature returns the signature associated with the subroutine, and calling .params
on the signature returns a list of Parameter objects. Each of these objects describes one pa-
rameter in detail.

TODO: talk about &signature.cando once that’s implemented

Signature introspection allows you to build interfaces that can obtain and then pass the
right data to a subroutine. For example, you could build a web form generator that knew
how to get input from a user, validate it, and then call a routine with it based upon the in-
formation obtained through introspection. A similar approach might generate a command
line interface along with some basic usage instructions.

Beyond this, traits (traits) allow you to associate extra data with parameters. is metadata
can go far beyond that which subroutines, signatures, and parameters normally provide.

48

Table 4.2: Methods in the Parameter class

stolen straight from S06, adapted a bit
method description
name e name of the lexical variable to bind to, if any
type e nominal type
constraints Any further type constraints
readonly True if the parameter has is readonly trait
rw True if the parameter has is rw trait
copy True if the parameter has is copy trait
named True if the parameter is to be passed by name
named names List of names a named parameter can be passed as
slurpy True if the parameter is slurpy
optional True if the parameter is optional
default A closure returning the default value
signature A nested signature to bind the argument against

49

5
Multis

Perl usually decideswhich function to call based on the name of the function or the contents
of a function reference. is is simple to understand. Perl can also examine the contents
of the arguments provided to decide which of several variants of a function–variants each
with the same name–to call. In this case, the amount and types of the function’s arguments
help to distinguish between multiple variants of a function. is is multidispatch, and the
functions to which Perl can dispatch in this case are multis.

Javascript Object Notation (JSON) is a simple data exchange format oen used for com-
municating with web services. It supports arrays, hashes, numbers, strings, boolean values,
and null, the undeĕned value.

JSON::Tiny is a minimal library used to convert Perl 6 data structures to JSON. See gram-
mars for the other part of that module, which parses JSON and turns it into Perl 6 data
structures. e full code, containing additional documentation and tests, is available from

51

Chapter 5 MULTIS

http://github.com/moritz/json/. is snippet demonstrates how multis make the code
simpler and more obvious:

1 multi to-json(Real $d) { ~$d }

2 multi to-json(Bool $d) { $d ?? 'true' !! 'false'; }

3 multi to-json(Str $d) {

4 '"'

5 ~ $d.trans(['"', '\\', "\b", "\f", "\n", "\r", "\t"]
6 => ['\"', '\\\\', '\b', '\f', '\n', '\r', '\t'])
7 ~ '"'

8 }

9

10 multi to-json(Array $d) {

11 return '['

12 ~ $d.values.map({ to-json($_) }).join(', ')

13 ~ ']';

14 }

15

16 multi to-json(Hash $d) {

17 return '{ '

18 ~ $d.pairs.map({ to-json(.key)

19 ~ ' : '

20 ~ to-json(.value) }).join(', ')

21 ~ ' }';

22 }

23

24 multi to-json($d where {!defined $d}) { 'null' }

25

26 multi to-json($d) {

27 die "Can't serialize an object of type " ~ $d.WHAT.perl

28 }

is code deĕnes a single multi sub named to-json, which takes one argument and turns
that into a string. to-json has many candidates; these subs all have the name to-json but
differ in their signatures. Every candidate resembles:

52

http://github.com/moritz/json/

1 multi to-json(Bool $data) { ... }

2 multi to-json(Real $data) { ... }

Which one is actually called depends on the type of the data passed to the subroutine. A
call such as to-json(Bool::True) invokes the ĕrst candidate. Passing a numeric value of
type Real instead invokes the second.

e candidate for handling Real is very simple; because JSON’s and Perl 6’s number formats
coincide, the JSON converter can rely on Perl’s conversion of these numbers to strings. e
Bool candidate returns a literal string 'true' or 'false'.

e Str candidate doesmore work: it wraps its parameter in quotes and escapes literal char-
acters that the JSON spec does not allow in strings–a tab character becomes \t, a newline
\n, and so on.

e to-json(Array $d) candidate converts all elements of the array to JSON with recursive
calls to to-json, joins them with commas, and surrounds them with square brackets. e
recursive calls demonstrate a powerful truth of multidispatch: these calls do not necessarily
recurse to the Array candidate, but dispatch to the appropriate candidate based on the types
of their arguments.

e candidate that processes hashes turns them into the form { "key1" : "value1", "key2"

: ["second", "value"] }. It does this again by recursing into to-json.

5.1 Constraints

Candidates can specify more complex signatures:

1 multi to-json($d where {!defined $d}) { 'null' }

is candidate adds two new twists. It contains no type deĕnition, in which case the type
of the parameter defaults to Any, the root of the normal branch of the type hierarchy. More
interestingly, the where {!defined $d} clause is a constraint, which deĕnes a so-called subset

53

Chapter 5 MULTIS

type. is candidate will match only some values of the type Any–those where the value is
undeĕned.

Whenever the compiler performs a type check on the parameter $d, it ĕrst checks the nom-
inal type (here, Any). If that check succeeds, it calls the code block. e entire type check
can only succeed if the code block returns a true value.

e curly braces for the constraint can contain arbitrary code. You can abuse this to count
how oen a type check occurs:

1 my $counter = 0;

2

3 multi a(Int $x) { };

4 multi a($x) { }

5 multi a($x where { $counter++; True }) { };

6

7 a(3);

8 say $counter; # says 0

9 a('str');

10 say $counter; # says 2

is code deĕnes three multis, one of which increases a counter whenever its where clause
executes. Any Perl 6 compiler is free to optimize away type checks it knows will succeed. In
the current Rakudo implementation, the second line with say will print a higher number
than the ĕrst.

In the ĕrst call of a(3), the nominal types alone already determine the best candidatematch,
so the where block never executes and the ĕrst $counter output is always 0.

e output aer the second call is at least 1. e compiler has to execute the where-block
at least once to check if the third candidate is the best match, but the speciĕcation does
not require theminimal possible number of runs. is is illustrated in the second $counter

output. e speciĕc implementation used to run this test actually executes the where-block
twice. Keep in mind that the number of times the subtype checks blocks execute is speciĕc
to any particular implementation of Perl 6.

54

Avoid writing code like this in anything other than example code. Relying on the
side effects of type checks produces unreliable code.

5.2 Narrowness

One candidate remains from the JSON example:

1 multi to-json($d) {

2 die "Can't serialize an object of type " ~ $d.WHAT.perl

3 }

With no explicit type or constraint on the parameter $d, its type defaults to Any–and thus it
matches any passed object. e body of this function complains that it doesn’t know what
to do with the argument. is works for the example, because JSON’s speciĕcation covers
only a few basic structures.

e declaration and intent may seem simple at ĕrst, but look closer. is ĕnal candidate
matches not only objects for which there is no candidate deĕned, but it can match for all
objects, including Int, Bool, Num. A call like to-json(2) has two matching candidates–Int
and Any.

If you run that code, you’ll discover that the Int candidate gets called. Because Int is a type
that conforms to Any, it is a narrowermatch for an integer. Given two types A and B, where A
conforms to B (A ~~ B, in Perl 6 code), an object which conforms to A does somore narrowly
than to B. In the case of multi dispatch, the narrowest match always wins.

A successfully evaluated constraint makes a match narrower than a similar signature with-
out a constraint. In the case of:

1 multi to-json($d) { ... }

2 multi to-json($d where {!defined $d}) { ... }

55

Chapter 5 MULTIS

... an undeĕned value dispatches to the second candidate.

However, a matching constraint always contributes less to narrowness than a more speciĕc
match in the nominal type.

1 TODO: Better example

2

3 multi a(Any $x where { $x > 0 }) { 'Constraint' }

4 multi a(Int $x) { 'Nominal type' }

5

6 say a(3), ' wins'; # says Nominal type wins

is restriction allows a clever compiler optimization: it can sort all candidates by narrow-
ness once to ĕnd the candidate with the best matching signature by examining nominal
type constraints. ese are far cheaper to check than constraint checks. Constraint check-
ing occurs next, then the compiler considers the nominal types of candidates.

With some trickery it is possible to get an object which conforms to a built-in type (Num,
for example) but which is also an undeĕned value. In this case the candidate that is speciĕc
to Num wins, because the nominal type check is narrower than the where {!defined $d}

constraint.

5.3 Multiple arguments

Candidate signatures may contain any number of positional and named arguments, both
explicit and slurpy. However only positional parameters contribute to the narrowness of a
match:

1 # RAKUDO has problems with an enum here,

2 # it answers with "Player One wins\nDraw\nDraw"
3 # using separate classes would fix that,

4 # but is not as pretty.

5 enum Symbol <Rock Paper Scissors>;

56

6 multi wins(Scissors $, Paper $) { +1 }

7 multi wins(Paper $, Rock $) { +1 }

8 multi wins(Rock $, Scissors $) { +1 }

9 multi wins(::T $, T $) { 0 }

10 multi wins($, $) { -1 }

11

12 sub play($a, $b) {

13 given wins($a, $b) {

14 when +1 { say 'Player One wins' }

15 when 0 { say 'Draw' }

16 when -1 { say 'Player Two wins' }

17 }

18 }

19

20 play(Scissors, Paper);

21 play(Paper, Paper);

22 play(Rock, Paper);

Rock

Paper

Scissors

Rock Paper Scissors

multi wins($, $) { -1 }

-1

-1

-1

Figure 5.1: Who wins the Rock, Paper, Scissors game?

is example demonstrates how multiple dispatch can encapsulate all of the rules of a pop-
ular game. Both players independently select a symbol (rock, paper, or scissors). Scissors
win against paper, paper wraps rock, and scissors can’t cut rock, but go blunt trying. If both
players select the same item, it’s a draw.

e code creates a type for each possible symbol by declaring an enumerated type, or enum.
For each combination of chosen symbols for which Player One wins there’s a candidate of
the form:

57

Chapter 5 MULTIS

1 multi wins(Scissors $, Paper $) { +1 }

Because the bodies of the subs here do not use the parameters, there’s no reason to force
the programmer to name them; they’re anonymous parameters. A single $ in a signature
identiĕes an anonymous scalar variable.

e fourth candidate, multi wins(::T $, T $) { 0 } uses ::T, which is a type capture
(similar to generics or templates in other programming languages). It binds the nominal
type of the ĕrst argument to T, which can then act as a type constraint. If you pass a Rock

as the ĕrst argument, T acts as an alias for Rock inside the rest of the signature and the body
of the routine. e signature (::T $, T $) will bind only two objects of the same type, or
where the second is of a subtype of the ĕrst.

In this game, that fourth candidate matches only for two objects of the same type. e
routine returns 0 to indicate a draw.

e ĕnal candidate is a fallback for the cases not covered yet–every case in which Player
Two wins.

If the (Scissors, Paper) candidate matches the supplied argument list, it is two steps nar-
rower than the (Any, Any) fallback, because both Scissors and Paper are direct subtypes
of Any, so both contribute one step.

If the (::T, T) candidate matches, the type capture in the ĕrst parameter does not con-
tribute any narrowness–it is not a constraint, aer all. However T is a constraint for the
second parameter which accounts for as many steps of narrowness as the number of inher-
itance steps between T and Any. Passing two Rocks means that ::T, T is one step narrower
than Any, Any. A possible candidate:

1 multi wins(Rock $, Rock $) {

2 say "Two rocks? What is this, 20,000 years ago?"

3 }

... would win against (::T, T).

58

5.4 Bindability checks

Traits can apply implicit constraints:

1 multi swap($a is rw, $b is rw) {

2 ($a, $b) = ($b, $a);

3 }

is routine exchanges the contents of its two arguments. It must bind the two arguments
as rw–both readable and writable. Calling the swap routine with an immutable value (for
example a number literal) will fail.

e built-in function substr can not only extract parts of strings, but also modify them:

1 # substr(String, Start, Length)

2 say substr('Perl 5', 0, 4); # prints Perl

3

4 my $p = 'Perl 5';

5 # substr(String, Start, Length, Substitution)

6 substr($p, 6, 1, '6');

7 # now $p contains the string Perl 6

You already know that the three-argument version and the four-argument version have
different candidates: the latter binds its ĕrst argument as rw:

1 multi substr($str, $start = 0, $length = *) { ... }

2 multi substr($str is rw, $start, $length, $substitution) { ... }

is is also an example of candidates with different arity (number of expected arguments).
is is seldom really necessary, because it is oen a better alternative to make parameters
optional. Cases where an arbitrary number of arguments are allowed are handled with
slurpy parameters instead:

59

Chapter 5 MULTIS

1 sub mean(*@values) {

2 ([+] @values) / @values;

3 }

5.5 Nested Signatures in Multi-dispatch

An earlier chapter showed how to use nested signatures to look deeper into data structures
and extract parts of them. In the context of multiple dispatch, nested signatures take on a
second task: they act as constraints to distinguish between the candidates. is means that
it is possible to dispatch based upon the shape of a data structure. is brings Perl 6 a lot of
the expressive power provided by pattern matching in various functional languages.

Some algorithms have very tidy and natural expressions with this feature, especially those
which recurse to a simple base case. Consider quicksort. e base case is that of the empty
list, which trivially sorts to the empty list. A Perl 6 version might be:

1 multi quicksort([]) { () }

e [] declares an empty nested signature for the ĕrst positional parameter. Additionally,
it requires that the ĕrst positional parameter be an indexable item–anything that would
match the @ sigil. e signature will only match if the multi has a single parameter which is
an empty list.

e other case is a list which contains at least one value–the pivot–and possibly other values
to partition according to the pivot. e rest of quicksort is a couple of recursive calls to sort
both partitions:

1 multi quicksort([$pivot, *@rest]) {

2 my @before = @rest.grep({ $_ <= $pivot });

3 my @after = @rest.grep({ $_ > $pivot });

4

5 return quicksort(@before), $pivot, quicksort(@after);

6 }

60

5.6 Protos

You have two options to write multi subs: either you start every candidate with multi sub

... or multi ..., or you declare once and for all that the compiler shall view every sub of
a given name as a multi candidate. Do the latter by installing a proto routine:

1 proto to-json($) { ... } # literal ... here

2

3 # automatically a multi

4 sub to-json(Bool $d) { $d ?? 'true' !! 'false' }

Nearly all Perl 6 built-in functions and operators export a proto deĕnition, which prevents
accidental overriding of built-ins1.

To hide all candidates of a multi and replace them by another sub, declare it as only
sub YourSub. At the time of writing, no compiler supports this.

5.7 Multi Methods

Methods can participate in dispatch just as do subroutines. For multi method dispatch the
invocant acts as a positional parameter.

e main difference between sub and method calls is where the dispatcher searches for the
routines: it looks for subroutines in the current and outer lexical scopes, whereas it looks
for methods in the class of the invocant and recursively in any parent classes.

Unlike subroutine dispatch, you can dispatch to multiple candidates with multimethods.
e $object.?method syntax dispatches to zero or one matching candidates; it is no error
if there is no matching candidate. $object.*method calls all matching candidates, but it is

1 One of the very rare exceptions is the smart match operator infix:<~~> which is not easily overloadable.
Instead it redispatches to overloadable multi methods.

61

Chapter 5 MULTIS

no error if there are no matching candidates. $object.+method calls at least one matching
candidate.

5.8 Toying with the candidate list

Each multi dispatch builds a list of candidates, all of which satisfy the nominal type con-
straints. For a normal sub or method call, the dispatcher invokes the ĕrst candidate which
passes any additional constraint checks.

A routine can choose to delegate its work to other candidates in that list. e callsame

primitive calls the next candidate, passing along the arguments received. e callwith

primitive calls the next candidate with different (and provided) arguments. Aer the called
routine has done its work, the callee can continue its work.

If there’s no further work to do, the routine can decide to hand control completely to the
next candidate by calling nextsame or nextwith. e former reuses the argument list and
the latter allows the use of a different argument list. is delegation is common in object
destructors, where each subclass may perform some cleanup for its own particular data.
Aer it ĕnishes its work, it can delegate to its parent class meethod by calling nextsame.

62

6
Classes and Objects

TODO: start with a much simpler bare-bones example!

e following program shows how a dependency handler might look in Perl 6. It show-
cases custom constructors, private and public attributes, methods and various aspects of
signatures. It’s not very much code, and yet the result is interesting and, at times, useful.

1 class Task {

2 has &!callback;

3 has Task @!dependencies;

4 has Bool $.done;

5

6 # RAKUDO: Should really be '&callback' [perl #69766]

7 method new(Callable $callback, Task *@dependencies) {

8 return self.bless(*, :$callback, :@dependencies);

9 }

10

63

Chapter 6 CLASSES AND OBJECTS

11 method add-dependency(Task $dependency) {

12 push @!dependencies, $dependency;

13 }

14

15 method perform() {

16 unless $!done {

17 .perform() for @!dependencies;

18 &!callback();

19 $!done = True;

20 }

21 }

22 }

23

24 my $eat =

25 Task.new({ say 'eating dinner. NOM!' },

26 Task.new({ say 'making dinner' },

27 Task.new({ say 'buying food' },

28 Task.new({ say 'making some money' }),

29 Task.new({ say 'going to the store' })

30),

31 Task.new({ say 'cleaning kitchen' })

32)

33);

34

35 $eat.perform();

6.1 Starting with class

Perl 6, like many other languages, uses the class keyword to introduce a new class. Any-
thing inside of the block that follows is part of the class deĕnition. You may place arbitrary
code there, just as you canwith any other block, but classes commonly contain declarations.
e example code includes declarations relating to state (attributes, introduced through the
has keyword) and behavior (methods, through the method keyword).

64

Declaring a class creates a type object, which by default gets installed into the package (just
like a variable declared with our scope). is type object is an “empty instance” of the class.
You’ve already seen these. For example, types such as Int and Str refer to the type object of
one of the Perl 6 built-in classes. e example uses the class name Task so that other code
can refer to it later, such as to create class instances by calling the new method.

6.2 I can has state?

e ĕrst three lines inside the class block all declare attributes (called ĕelds or instance stor-
age in other languages). ese are storage locations that every instance of a class gets. Just
as a my variable can not be accessed from the outside of its declared scope, attributes are
not accessible outside of the class. is encapsulation is one of the key principles of object
oriented design.

e ĕrst declaration speciĕes instance storage for a callback – a bit of code to invoke in
order to perform the task that an object represents:

1 has &!callback;

e & sigil indicates that this attribute represents something invocable. e ! character is a
twigil, or secondary sigil. A twigil forms part of the name of the variable. In this case, the !
twigil emphasizes that this attribute is private to the class.

e second declaration also uses the private twigil:

1 has Task @!dependencies;

However, this attribute represents an array of items, so it requires the @ sigil. ese items
each specify a task that must be completed before the present one can complete. Further-
more, the type declaration on this attribute indicates that the array may only hold instances
of the Task class (or some subclass of it).

e third attribute represents the state of completion of a task:

65

Chapter 6 CLASSES AND OBJECTS

1 has Bool $.done;

is scalar attribute (with the $ sigil) has a type of Bool. Instead of the ! twigil, this twigil
is .. While Perl 6 does enforce encapsulation on attributes, it also saves you from writing
accessor methods. Replacing the ! with a . both declares the attribute $!done and an
accessor method named done. It’s as if you had written:

1 has Bool $!done;

2 method done() { return $!done }

Note that this is not like declaring a public attribute, as some languages allow; you really get
both a private storage location and a method, without having to write the method by hand.
You are free instead to write your own accessor method, if at some future point you need
to do something more complex than return the value.

Note that using the . twigil has created a method that will provide with readonly access to
the attribute. If instead the users of this object should be able to reset a task’s completion
state (perhaps to perform it again), you can change the attribute declaration:

1 has Bool $.done is rw;

e is rw trait causes the generated accessor method to return something external code
can modify to change the value of the attribute.

6.3 Methods

While attributes give objects state, methods give objects behaviors. Ignore the new method
temporarily; it’s a special type of method. Consider the second method, add-dependency,
which adds a new task to this task’s dependency list.

1 method add-dependency(Task $dependency) {

2 push @!dependencies, $dependency;

3 }

66

In many ways, this looks a lot like a sub declaration. However, there are two important
differences. First, declaring this routine as a method adds it to the list of methods for the
current class. us any instance of the Task class can call this method with the . method
call operator. Second, a method places its invocant into the special variable self.

emethod itself takes the passed parameter–whichmust be an instance of the Task class–and
pushes it onto the invocant’s @!dependencies attribute.

e second method contains the main logic of the dependency handler:

1 method perform() {

2 unless $!done {

3 .perform() for @!dependencies;

4 &!callback();

5 $!done = True;

6 }

7 }

It takes no parameters, working instead with the object’s attributes. First, it checks if the
task has already completed by checking the $!done attribute. If so, there’s nothing to do.

Otherwise, the method performs all of the task’s dependencies, using the for construct
to iterate over all of the items in the @!dependencies attribute. is iteration places each
item–each a Task object–into the topic variable, $. Using the . method call operator with-
out specifying an explicit invocant uses the current topic as the invocant. us the iteration
construct calls the .perform()method on every Task object in the @!dependencies attribute
of the current invocant.

Aer all of the dependencies have completed, it’s time to perform the current Task’s task by
invoking the &!callback attribute directly; this is the purpose of the parentheses. Finally,
the method sets the $!done attribute to True, so that subsequent invocations of perform on
this object (if this Task is a dependency of another Task, for example) will not repeat the
task.

67

Chapter 6 CLASSES AND OBJECTS

6.4 Constructors

Perl 6 is rather more liberal than many languages in the area of constructors. A constructor
is anything that returns an instance of the class. Furthermore, constructors are ordinary
methods. You inherit a default constructor named new from the base class Object, but you
are free to override new, as this example does:

1 # RAKUDO: Should really be '&callback' [perl #69766]

2 method new(Callable $callback, Task *@dependencies) {

3 return self.bless(*, :$callback, :@dependencies);

4 }

e biggest difference between constructors in Perl 6 and constructors in languages such
as C# and Java is that rather than setting up state on a somehow already magically created
object, Perl 6 constructors actually create the object themselves. is easiest way to do this
is by calling the bless method, also inherited from Object. e bless method expects a
positional parameter–the so-called “candidate”–and a set of named parameters providing
the initial values for each attribute.

e example’s constructor turns positional arguments into named arguments, so that the
class can provide a nice constructor for its users. e ĕrst parameter is the callback (the
thing to do to execute the task). e rest of the parameters are dependent Task instances.
e constructor captures these into the @dependencies slurpy array and passes them as
named parameters to bless (note that :$callback uses the name of the variable–minus
the sigil–as the name of the parameter).

6.5 Consuming our class

Aer creating a class, you can create instances of the class. Declaring a custom constructor
provides a simple way of declaring tasks along with their dependencies. To create a single
task with no dependencies, write:

68

1 my $eat = Task.new({ say 'eating dinner. NOM!' });

An earlier section explained that declaring the class Task installed a type object had been
installed in the namespace. is type object is a kind of “empty instance” of the class,
speciĕcally an instance without any state. You can call methods on that instance, as long as
they do not try to access any state; new is an example, as it creates a new object rather than
modifying or accessing an existing object.

Unfortunately, dinner never magically happens. It has dependent tasks:

1 my $eat =

2 Task.new({ say 'eating dinner. NOM!' },

3 Task.new({ say 'making dinner' },

4 Task.new({ say 'buying food' },

5 Task.new({ say 'making some money' }),

6 Task.new({ say 'going to the store' })

7),

8 Task.new({ say 'cleaning kitchen' })

9)

10);

Notice how the custom constructor and sensible use of whitespace allows a layout which
makes task dependencies clear.

Finally, the perform method call recursively calls the perform method on the various other
dependencies in order, giving the output:

1 making some money

2 going to the store

3 buying food

4 cleaning kitchen

5 making dinner

6 eating dinner. NOM!

69

Chapter 6 CLASSES AND OBJECTS

6.6 Exercises

1. e method add-dependency in Task permits the creation of cycles in the dependency
graph. at is, if you follow dependencies, you can eventually return to the original Task.
Show how to create a graph with cycles and explain why the perform method of a Task

whose dependencies contain a cycle would never terminate successfully.

Answer: You can create two tasks, and then “short-circuit” them with add-dependency:

1 my $a = Task.new({ say 'A' });

2 my $b = Task.new({ say 'B' }, $a);

3 $a.add-dependency($b);

e perform method will never terminate because the ĕrst thing the method does is to call
all the perform methods of its dependencies. Because $a and $b are dependencies of each
other, none of them would ever get around to calling their callbacks. e program will
exhaust memory before it ever prints 'A' or 'B'.

2. Is there a way to detect the presence of a cycle during the course of a perform call? Is
there a way to prevent cycles from ever forming through add-dependency?

Answer: To detect the presence of a cycle during a perform call, keep track of which Tasks
have started; prevent a Task from starting twice before ĕnishing:

1 augment class Task {

2 has Bool $!started = False;

3

4 method perform() {

5 if $!started++ && !$!done {

6 die "Cycle detected, aborting";

7 }

8

9 unless $!done {

10 .perform() for @!dependencies;

11 &!callback();

70

12 $!done = True;

13 }

14 }

15 }

Another approach is to stop cycles from formingduring add-dependency by checkingwhether
there’s already a dependency running in the other direction. (is is the only situation in
which a cycle can occur.) is requires the addition of a helper method depends-on, which
checks whether a task depends on another one, either directly or transitively. Note the use
of » and [||] to write succinctly what would otherwise have involved looping over all the
dependencies of the Task:

1 augment class Task {

2 method depends-on(Task $some-task) {

3 $some-task === any(@!dependencies)

4 [||] @!dependencies».depends-on($some-task)

5 }

6

7 method add-dependency(Task $dependency) {

8 if $dependency.depends-on(self) {

9 warn 'Cannot add that task, since it would introduce a cycle.';

10 return;

11 }

12 push @!dependencies, $dependency;

13 }

14 }

3. How could Task objects execute their dependencies in parallel? (ink especially about
how to avoid collisions in “diamond dependencies”, where a Task has two different depen-
dencies which in turn have the same dependency.)

Answer: Enabling parallelism is easy; change the line .perform() for @!dependencies;

into @!dependencies».perform(). However, there may be race conditions in the case of
diamond dependencies, wherein Tasks A starts B and C in parallel, and both start a copy
of D, making D run twice. e solution to this is the same as with the cycle-detection in
Question 2: introducing an attribute $!started. Note that it’s impolite to die if a Task has

71

Chapter 6 CLASSES AND OBJECTS

started but not yet ĕnished, because this time it might be due to parallelism rather than
cycles:

1 augment class Task {

2 has Bool $!started = False;

3

4 method perform() {

5 unless $!started++ {

6 @!dependencies».perform();

7 &!callback();

8 $!done = True;

9 }

10 }

11 }

72

7
Roles

A role is a standalone, named, reusable unit of behavior. You can compose a role into a class
at compile time or add it to an individual object at runtime.

at’s an abstract deĕnition best explained by an example. is program demonstrates a
simple and pluggable IRC bot framework which understands a few simple commands.

1 # XXX This is VERY preliminary code and needs filling out. But it

2 # does provide opportunities to discuss runtime mixins, compile time

3 # composition, requirements and a few other bits.

4

5 my regex nick { \w+ }

6 my regex join-line { ... <nick> ... }

7 my regex message-line { $<sender>=[...] $<message>=[...] }

8

9 class IRCBot {

10 has $.bot-nick;

73

Chapter 7 ROLES

11 method run($server) {

12 ...

13 }

14 }

15

16 role KarmaTracking {

17 has %!karma-scores;

18

19 multi method on-message($sender, $msg where /^karma <ws> <nick>/) {

20 if %!karma-scores{$<nick>} -> $karma {

21 return $<nick> ~ " has karma $karma";

22 }

23 else {

24 return $<nick> ~ " has neutral karma";

25 }

26 }

27

28 multi method on-message($sender, $msg where /<nick> '++'/) {

29 %!karma-scores{$<nick>}++;

30 }

31

32 multi method on-message($sender, $msg where /<nick> '--'/) {

33 %!karma-scores{$<nick>}--;

34 }

35 }

36

37 role Oping {

38 has @!whoz-op;

39

40 multi method on-join($nick) {

41 if $nick eq any(@!whoz-op) {

42 return "/mode +o $nick";

43 }

44 }

45

46 multi method on-message($sender, $msg where /^trust <ws> <nick>/) {

47 if $sender eq any(@!whoz-op) {

48 push @!whoz-op, $<nick>;

74

49 return "I now trust " ~ $<nick>;

50 }

51 else {

52 return "But $sender, I don't trust you";

53 }

54 }

55 }

56

57 role AnswerToAll {

58 method process($raw-in) {

59 if $raw-in ~~ /<on-join>/ {

60 self.*on-join($<nick>);

61 }

62 elsif $raw-in ~~ /<on-message>/ {

63 self.*on-message($<sender>, $<message>)

64 }

65 }

66 }

67

68 role AnswerIfTalkedTo {

69 method bot-nick() { ... }

70

71 method process($raw-in) {

72 if $raw-in ~~ /<on-join>/ {

73 self.*on-join($<nick>);

74 }

75 elsif $raw-in ~~ /<on-message>/ -> $msg {

76 my $my-nick = self.bot-nick();

77 if $msg<msg> ~~ /^ $my-nick ':'/ {

78 self.*on-message($msg<sender>, $msg<message>)

79 }

80 }

81 }

82 }

83

84 my %pluggables =

85 karma => KarmaTracking,

86 op => Oping;

75

Chapter 7 ROLES

87

88 role Plugins {

89 multi method on-message($self is rw: $sender, $msg where /^youdo <ws> (\w+)/) {

90 if %pluggables{$0} -> $plug-in {

91 $self does $plug-in;

92 return "Loaded $0";

93 }

94 }

95 }

96

97 class KarmaKeeper is IRCBot does AnswerToAll does KarmaTracking {

98 }

99

100 class NothingBot is IRCBot does AnswerIfTalkedTo does Plugins {

101 }

7.1 What is a role?

Previous chapters have explained classes and grammars. A role is another type of package.
Like classes and grammars, a role can contain methods (including named regexes) and at-
tributes. However, a role cannot stand on its own. To use a role, you must incorporate it
into an object, a class, or a grammar.

In traditional object orientation, classes perform two tasks. ey represent entities in the
systemby providingmodels fromwhich to create instances. ey also provide amechanism
for code re-use. ese two tasks are somewhat in tension. For optimal re-use, classes should
be small, but in order to represent a complex entity with many behaviors, classes tend to
grow large.

Perl 6 classes retain the responsibility for instance management. Roles handle the task
of code reuse. A role contains the methods and attributes required to provide a named,
reusable unit of behavior. Building a class out of roles uses a safe mechanism called Ęat-
tening composition. You may also apply a role to an individual object. Both of these design
techniques appear in the example code.

76

Roles may also support parameters. is helps Perl 6 provide generic programming, along
the lines of generics in C# and Java, or templates in C++.

7.2 Compile Time Composition

Take a look at the KarmaKeeper class deĕnition. e body is empty; the class deĕnes no
attributes ormethods of its own. e class inherits from IRCBot, using the is traitmodiĕer –
something familiar fromearlier chapters – but it also uses the does traitmodiĕer to compose
two roles into the class.

e process of role composition is simple. Perl takes the attributes and methods deĕned in
each role and copies them into the class. Aer composition, the class appears as if it had
deĕned those behaviors itself. is is part of the Ęattening property: aer composing a role
into the class, the roles in and of themselves are only important when querying the class to
determine if it performs the role. Querying the methods of the KarmaKeeper class through
introspection will report that the class has both a processmethod and an on-messagemulti
method.

If this were all that roles provided, they’d have few advantages over inheritance or mixins.
Roles get much more interesting in the case of a conĘict. Consider the class deĕnition:

1 class MyBot is IRCBot does AnswerToAll does AnswerIfTalkedTo {

2 }

Both the AnswerToAll and AnswerIfTalkedTo roles provide a method named process. Even
though they share a name, themethods perform semantically different behaviors–behaviors
which conĘict. e role composer will produce a compile-time error about this conĘict,
asking the programmer to provide a resolution.

Multiple inheritance and mixin mechanisms rarely provide this degree of conĘict resolu-
tion. In those situations, the order of inheritance or mixin decides which method wins. All
possible roles are equal in role composition.

77

Chapter 7 ROLES

What can you do if there is a conĘict? In this case, it makes little sense to compose both
of the roles into a class. e programmer here has made a mistake and should choose to
compose only one role to provide the desired behavior. An alternative way to resolve a
conĘict is to write a method with the same name in the class body itself:

1 class MyBot is IRCBot does AnswerToAll does AnswerIfTalkedTo {

2 method process($raw-in) {

3 # Do something sensible here...

4 }

5 }

If the role composer detects a method with the same name in the class body, it will then
disregard all of the (possibly conĘicting) ones from the roles. Put simply, methods in the
class always win.

7.2.1 Multi-methods and composition

Sometimes it’s okay to have multiple methods of the same name, provided they have dif-
ferent signatures such that the multidispatch mechanism can distinguish between them.
Multi methods with the same name from different roles will not be in conĘict. Instead, the
candidates from all of the roles will combine together during composition into the class.

If the class provides a method of the same name that is also multi, then themulti candidates
from the class will be included. On the other hand, if the class has a method of the same
name that is not declared as amulti, then themethod in the class alone–as usual–will win.

is is themechanism by which a class that composes both, for example, the KarmaTracking
role and the Oping role would end up having the candidates that both roles provide for the
on-message method. As a class ends up composing more than a couple of roles, it may be
preferable to use an alternative syntax that allows you to list the roles in the class body:

1 class KarmaKeeper is IRCBot {

2 does AnswerToAll;

3 does KarmaTracking;

78

4 does Oping;

5 }

7.2.2 Calling all candidates

e processmethods of the roles AnswerToAll and AnswerIfTalkedTo use amodiĕed syntax
for calling methods:

1 self.*on-message($msg<sender>, $msg<message>)

e use of .* instead of . changes the semantics of the method dispatch. Just as the *

quantiĕer in regexes means “zero or more”, the .* dispatch operator will call zero or more
matching methods. If no on-message multi candidates match, the call will not produce
an error. If more than one on-message multi candidate matches, Perl will call all of them,
whether found by multiple dispatch, searching the inheritance hierarchy, or both.

ere are two other variants. .+ greedily calls all methods but dies if there is not at least one
method that matches. .?, which tries to call one method, but returns a Failure rather then
throwing an exception. e zero-or-more and one-or-more dispatch forms are somewhat
rare, but very useful in event driven programming. One-or-failure is very useful when
dealing with per-object role application.

7.2.3 Expressing requirements

e role AnswerIfTalkedTo declares a stub for the method bot-nick, but never gives an
implementation.

1 method bot-nick() { ... }

In the context of a role, this techniques declares that any class which composes this role
must somehow provide a method named bot-nick. e class itself may provide it, another

79

Chapter 7 ROLES

role must provide it, or a parent class must provide it. IRCBot does the latter; it IRCBot
deĕnes an attribute $!bot-nick along with an accessor method.

You are not required to make explicit the methods on which your role depends. If you do
so, the role composer can detect any errors at compile time. If you do not, the problem will
only appear at runtime, when and if something attempts to call the missing method.

7.3 Runtime Application of Roles

Class-based OO usually works, where instances have the methods and attributes of the
classes they instantiate. Sometimes, something more dynamic is useful. Perl 6 allows you
to add extra behaviors to individual objects by applying roles to individual objects at run-
time.

e example in this chapter uses this in order to give bots new abilities during its lifetime.
e Plugins role is at the heart of this. Note the signature of the method on-message. It
captures the invocant into a variable $self marked rw, which indicates that the invocant
may be modiĕed. Inside the method, that happens:

1 if %pluggables{$0} -> $plug-in {

2 $self does $plug-in;

3 return "Loaded $0";

4 }

Like classes, roles are ĕrst-class in Perl 6; you can pass them around just like any other
object. e %pluggables hash maps names of plug-ins to Role objects. us this lookup
stores a Role in $plug-in. e does operator adds this role to $self–not the class of $self,
but the instance itself. From this point on, $self now has all of the methods from the role,
in addition to all of the ones that it had before. Importantly, this does not have any inĘuence
on any other instances of the same class; only this one instance has changed.

80

7.3.1 Differences from compile time composition

Runtime application differs from compile time composition in that methods in the applied
role in will automatically override any of the same name within the class of the object. It’s as
if you had written an anonymous subclass of the current class of the object that composed
the role into it. is means that .* will ĕnd both those methods that mixed into the object
from one or more roles along with any that already existed in the class.

If you wish to apply multiple roles at a time, list them all with does. is case behaves the
same way as compile-time composition, in that the role composer will compose them all
into the imaginary anonymous subclass. As you might expect, any conĘicts will occur at
this point.

is gives a degree of safety, but it happens at runtime and is thus not as safe as compile
time composition. For safety, perform your compositions at compile time. For example,
instead of applying multiple roles to an instance, compose them into a new role at compile
time and apply that role to the instance.

7.3.2 The but operator

Runtime role application with doesmodiĕes an object in-place: $x does SomeRolemodiĕes
the object stored in $x. When this is not desirable, the but operator can be used instead.
It returns a clone of the object, and applies the role composition only to the clone – the
original object stays the same.

TODO: example

81

Chapter 7 ROLES

7.4 Parametric Roles

82

8
Subtypes

1 enum Suit <spades hearts diamonds clubs>;

2 enum Rank (2, 3, 4, 5, 6, 7, 8, 9, 10,

3 'jack', 'queen', 'king', 'ace');

4

5 class Card {

6 has Suit $.suit;

7 has Rank $.rank;

8

9 method Str {

10 $.rank.name ~ ' of ' ~ $.suit.name;

11 }

12 }

13

14 subset PokerHand of List where { .elems == 5 && all(|$_) ~~ Card }

15

16 sub n-of-a-kind($n, @cards) {

17 for @cards>>.rank.uniq -> $rank {

83

Chapter 8 SUBTYPES

18 return True if $n == grep $rank, @cards>>.rank;

19 }

20 return False;

21 }

22

23 subset Quad of PokerHand where { n-of-a-kind(4, $_) }

24 subset ThreeOfAKind of PokerHand where { n-of-a-kind(3, $_) }

25 subset OnePair of PokerHand where { n-of-a-kind(2, $_) }

26

27 subset FullHouse of PokerHand where OnePair & ThreeOfAKind;

28

29 subset Flush of PokerHand where -> @cards { [==] @cards>>.suit }

30

31 subset Straight of PokerHand where sub (@cards) {

32 my @sorted-cards = @cards.sort({ .rank });

33 my ($head, @tail) = @sorted-cards;

34 for @tail -> $card {

35 return False if $card.rank != $head.rank + 1;

36 $head = $card;

37 }

38 return True;

39 }

40

41 subset StraightFlush of Flush where Straight;

42

43 subset TwoPair of PokerHand where sub (@cards) {

44 my $pairs = 0;

45 for @cards>>.rank.uniq -> $rank {

46 ++$pairs if 2 == grep $rank, @cards>>.rank;

47 }

48 return $pairs == 2;

49 }

50

51 sub classify(PokerHand $_) {

52 when StraightFlush { 'straight flush', 8 }

53 when Quad { 'four of a kind', 7 }

54 when FullHouse { 'full house', 6 }

55 when Flush { 'flush', 5 }

84

56 when Straight { 'straight', 4 }

57 when ThreeOfAKind { 'three of a kind', 3 }

58 when TwoPair { 'two pair', 2 }

59 when OnePair { 'one pair', 1 }

60 when * { 'high cards', 0 }

61 }

62

63 my @deck = map -> $suit, $rank { Card.new(:$suit, :$rank) },

64 (Suit.pick(*) X Rank.pick(*));

65

66 @deck .= pick(*);

67

68 my @hand1;

69 @hand1.push(@deck.shift()) for ^5;

70 my @hand2;

71 @hand2.push(@deck.shift()) for ^5;

72

73 say 'Hand 1: ', map { "\n $_" }, @hand1>>.Str;

74 say 'Hand 2: ', map { "\n $_" }, @hand2>>.Str;

75

76 my ($hand1-description, $hand1-value) = classify(@hand1);

77 my ($hand2-description, $hand2-value) = classify(@hand2);

78

79 say sprintf q[The first hand is a '%s' and the second one a '%s', so %s.],

80 $hand1-description, $hand2-description,

81 $hand1-value > $hand2-value

82 ?? 'the first hand wins'

83 !! $hand2-value > $hand1-value

84 ?? 'the second hand wins'

85 !! "the hands are of equal value"; # XXX: this is wrong

85

9
Pattern matching

Regular expressions are a concept from computer science where simple patterns are used
to describe the format of text. Pattern matching is applying these patterns to actual strings
to see if they ... well, match. Most modern regular expression facilities are more powerful
than traditional regular expressions due to the inĘuence of languages such as Perl, but the
short-hand term regex has stuck and continues to mean “regular expression like pattern
matching”. In Perl 6, though the speciĕc syntax used to describe the patterns is different
from PCRE1 and POSIX2, we continue to call them regex.

A common writing error is to duplicate a word by accident. It is hard to catch such errors
by rereading your own text, but Perl can do it for you using regex:

1 my $s = 'the quick brown fox jumped over the the lazy dog';

2

1 Perl Compatible Regular Expressions
2 Portable Operating System Interface for Unix. See IEEE standard 1003.1-2001

87

Chapter 9 PATTERN MATCHING

3 if $s ~~ m/ « (\w+) \W+ $0 » / {

4 say "Found '$0' twice in a row";

5 }

In the simplest case a regex consists of a constant string. Matching a string against that
regex searches for that string:

1 if 'properly' ~~ m/ perl / {

2 say "'properly' contains 'perl'";

3 }

e construct m/ ... / builds a regex. A regex on the right hand side of the ~~ smart match
operator applies against the string on the le hand side. By default, whitespace inside the
regex is irrelevant for thematching, so writing the regex as m/ perl /, m/perl/ or m/ p e rl/

all produce the exact same semantics–although the ĕrst way is probably the most readable
one.

Only word characters, digits, and the underscore cause an exact substring search. All other
characters may have a special meaning. If you want to search for a comma, an asterisk, or
another non-word character, you must quote or escape it3:

1 my $str = "I'm *very* happy";

2

3 # quoting

4 if $str ~~ m/ '*very*' / { say '\o/' }

5 # escaping

6 if $str ~~ m/ * very * / { say '\o/' }

However searching for literal strings gets boring pretty quickly. Regex support special (also
called metasyntactic) characters. e dot (.) matches a single, arbitrary character:

1 my @words = <spell superlative openly stuff>;

2 for @words -> $w {

3 If you’re just searching for literal text and not actually utilizing the pattern matching features of regex,
consider using the index or rindex subroutines instead.

88

3 if $w ~~ m/ pe.l / {

4 say "$w contains $/";

5 } else {

6 say "no match for $w";

7 }

8 }

is prints

spell contains pell

superlative contains perl

openly contains penl

no match for stuff

e dot matched an l, r, and n, but it would also match a space in the sentence the spec-
troscope lacks resolution–regexes don’t care about word boundaries at all. e special vari-
able $/ stores (among other things) only the part of the string that matched the regular
expression. $/ holds the so-called match object.

Suppose you have a big chunk of text. For solving a crossword puzzle you are looking for
words containing pe, then an arbitrary letter, and then an l (but not a space, as your puzzle
has extra markers for those). e appropriate regex for that is m/pe \w l/. e \w control
sequence stands for a “Word” character–a letter, digit, or an underscore. In the example at
the beginning of this chapter \w is used to build the deĕnition of a “word”.

Several other common control sequences each match a single character:

Each of these backslash sequence means the complete opposite if you convert the letter
to upper case: \W matches a character that’s not a word character and \N matches a single
character that’s not a newline.

ese matches are not limited to the ASCII range–\d matches Latin, Arabic-Indic, De-
vanagari and other digits, \s matches non-breaking whitespace and so on. ese character
classes follow the Unicode deĕnition of what is a letter, a number, and so on. Deĕne custom
character classes by listing them inside nested angle and square brackets <[...]>.

89

Chapter 9 PATTERN MATCHING

Table 9.1: Backslash sequences and their meaning

Symbol Description Examples
\w word character l, ö, 3,
\d digit 0, 1
\s whitespace (tab), (blank), (newline)
\t tabulator (tab)
\n newline (newline)
\h horizontal whitespace (space), (tab)
\v vertical whitespace (newline), (vertical tab)

1 if $str ~~ / <[aeiou]> / {

2 say "'$str' contains a vowel";

3 }

4

5 # negation with a -

6 if $str ~~ / <-[aeiou]> / {

7 say "'$str' contains something that's not a vowel";

8 }

Rather than listing each character in the character class individually, you may specify a
range of characters by placing the range operator .. between the character that starts the
range and the character that ends the range:

1 # match a, b, c, d, ..., y, z

2 if $str ~~ / <[a..z]> / {

3 say "'$str' contains a lower case Latin letter";

4 }

Added to or subtract from character classes with the + and - operators:

1 if $str ~~ / <[a..z]+[0..9]> / {

2 say "'$str' contains a letter or number";

3 }

90

4

5 if $str ~~ / <[a..z]-[aeiou]> / {

6 say "'$str' contains a consonant";

7 }

e negated character class is a special application of this idea.

A quantiĕer can specify how oen something has to occur. A question mark ? makes the
preceding unit (be it a letter, a character class, or something more complicated) optional,
meaning it can either be present either zero or one times in the string being matched. So
m/ho u? se/ matches either house or hose. You can also write the regex as m/hou?se/

without any spaces, and the ? still quantiĕes only the u.

e asterisk * stands for zero ormore occurrences, so m/z\w*o/ canmatch zo, zoo, zero and
so on. e plus + stands for one or more occurrences, \w+ usually matches what you might
consider a word (though only matches the ĕrst three characters from isn't because ' isn’t
a word character).

e most general quantiĕer is **. If followed by a number it matches that many times, and
if followed by a range, it can match any number of times that the range allows:

1 # match a date of the form 2009-10-24:

2 m/ \d**4 '-' \d\d '-' \d\d /

3

4 # match at least three 'a's in a row:

5 m/ a ** 3..* /

If the right hand side is neither a number nor a range, it becomes a delimiter, which means
that m/ \w ** ', '/ matches a list of characters separated by a comma and a whitespace
each.

If a quantiĕer has several ways to match, Perl will choose the longest one. is is greedy
matching. Appending a question mark to a quantiĕer makes it non-greedy 45:

4 e non-greedy general quantiĕer is $thing **? $count, so the question mark goes directly aer the
second asterisk.

5 is example is a very poor way to parse HTML; using a proper parser is always preferable.

91

Chapter 9 PATTERN MATCHING

1 my $html = '<p>A paragraph</p> <p>And a second one</p>';

2 if $html ~~ m/ '<p>' .* '</p>' / {

3 say 'Matches the complete string!';

4 }

5

6 if $html ~~ m/ '<p>' .*? '</p>' / {

7 say 'Matches only <p>A paragraph</p>!';

8 }

To apply a modiĕer to more than just one character or character class, group items with
square brackets:

1 my $ingredients = 'milk, flour, eggs and sugar';

2 # prints "milk, flour, eggs"

3 $ingredients ~~ m/ [\w+] ** [\,\s*] / && say $/;

Separate alternations–tokens and units of which any can match– with vertical bars. One
vertical bar between two parts of a regex means that the longest alternative wins. Two bars
make the ĕrst matching alternative win.

1 $string ~~ m/ \d**4 '-' \d\d '-' \d\d | 'today' | 'yesterday' /

9.1 Anchors

So far every regex could match anywhere within a string. Oen it is desirable to limit the
match to the start or end of a string or line, or to word boundaries.

A single caret ^ anchors the regex to the start of the string, a dollar $ to the end. m/ ^a /

matches strings beginning with an a, and m/ ^ a $ / matches strings that consist only of
an a.

92

Table 9.2: Regex anchors

Anchor Meaning
^ start of string
$ end of string
^^ start of a line
$$ end of a line
<< le word boundary
« le word boundary
>> right word boundary
» right word boundary

9.2 Captures

Regexes are useful to check if a string is in a certain format, and to search for patterns within
a string. With some more features they can be very good for extracting information too.

Surrounding part of a regex with round brackets (aka parentheses) (...) makes Perl cap-
ture the string it matches. e string matched by the ĕrst group of parentheses is available
in $/[0], the second in $/[1], etc. $/ acts as an array containing the captures from each
parentheses group.

1 my $str = 'Germany was reunited on 1990-10-03, peacefully';

2 if $str ~~ m/ (\d**4) \- (\d\d) \- (\d\d) / {

3 say 'Year: ', $/[0];

4 say 'Month: ', $/[1];

5 say 'Day: ', $/[2];

6 # usage as an array:

7 say $/.join('-'); # prints 1990-10-03

8 }

If you quantify a capture, the corresponding entry in thematch object is a list of othermatch
objects:

93

Chapter 9 PATTERN MATCHING

1 my $ingredients = 'eggs, milk, sugar and flour';

2 if $ingredients ~~ m/(\w+) ** [\,\s*] \s* 'and' \s* (\w+)/ {

3 say 'list: ', $/[0].join(' | ');

4 say 'end: ', $/[1];

5 }

is prints

list: eggs | milk | sugar

end: flour

e ĕrst capture, (\w+), was quantiĕed, and thus $/[0] is a list on which the code calls the
.join method. Regardless of how many times the ĕrst capture matches, the second is still
available in $/[1].

As a shortcut, $/[0] is also available under the name $0, $/[1] as $1, and so on. ese
aliases are also available inside the regex. is allows you to write a regex that detects that
common error of duplicated words, just like the example at the beginning of this chapter:

1 my $s = 'the quick brown fox jumped over the the lazy dog';

2

3 if $s ~~ m/ « (\w+) \W+ $0 » / {

4 say "Found '$0' twice in a row";

5 }

e regex ĕrst anchors to a le word boundary with « so that it doesn’t match partial dupli-
cation of words. Next, the regex captures aword ((\w+)), followed by at least one non-word
character \W+. is implies a right word boundary, so there is no need to use an explicit
boundary. en it matches the previous capture followed by a right word boundary.

Without the ĕrst word boundary anchor, the regex would for example match strand and
beach or lathe the table leg. Without the last word boundary anchor it would also match the
theory.

94

9.3 Named regexes

You can declare regexes just like subroutines and even name them. Suppose you found the
example at the beginning of this chapter useful andwant tomake it available easily. Suppose
also you want to extend it to handle contractions such as doesn't or isn't:

1 my regex word { \w+ [\' \w+]? }

2 my regex dup { « <word=&word> \W+ $<word> » }

3

4 if $s ~~ m/ <dup=&dup> / {

5 say "Found '{$<dup><word>}' twice in a row";

6 }

is code introduces a regex named word, which matches at least one word character, op-
tionally followed by a single quote. Another regex called dup (short for duplicate) is an-
chored at a word boundary.

Since named regex are very much like subroutines, within a regex, the syntax <&word> lo-
cates the regex word within the current lexical scope and matches as if the regex were used
in its place. e <name=®ex> syntax creates a capture named name, which records what
®ex matched in the match object.

In our example, dup calls the word regex, then matches at least one non-word character, and
then matches the same string as previously matched by the regex word. It ends with another
word boundary. e syntax for is backreference is a dollar sign followed by the name
of the capture in angle brackets. 6 » simply looks up a regex named word in the current
grammar and parent grammars, and creates a capture of the same name.>

Within the if block, $<dup> is short for $/{'dup'}. It accesses the match object that the
regex dup produced. dup also has a subrule called word, and the match object produced
from that call is accessible as $<dup><word>.

6 In grammars, which are introduced in the next chapter, c« <word

95

Chapter 9 PATTERN MATCHING

Just as subroutines allow for ordinary code, named regexesmake it easy to organize complex
regexes in smaller pieces.

9.4 Modiöers

e previous example to match a list of words was:

1 m/(\w+) ** [\,\s*] \s* 'and' \s* (\w+)/

is works, but the repeated “I don’t care about whitespace” units are clumsy. e desire
to allow whitespace anywhere in a string is common, and Perl 6 regexes provide such an
option: the :sigspace modiĕer (shortened to :s):

1 my $ingredients = 'eggs, milk, sugar and flour';

2

3 if $ingredients ~~ m/:s (\w+) ** \,'and' (\w+)/ {

4 say 'list: ', $/[0].join(' | ');

5 say 'end: ', $/[1];

6 }

is modiĕer allows optional whitespace in the text wherever there is one or more whites-
pace character in the pattern. It’s even a bit cleverer than that: between two word characters
whitespace is mandatory. e regex does not match the string eggs, milk, sugarand-

flour.

e :ignorecase or :i modiĕer makes the regex insensitive to upper and lower case, so m/

:i perl / matches not only perl, but also PerL or PERL (though nobody really writes the
programming language in all uppercase letters).

96

9.5 Backtracking control

In the course of matching a regex against a string, the regex enginemay reach a point where
an alternation has matched a particular branch or a quantiĕer has greedily matched all it
can but the ĕnal portion of the regex fails to match. In this case, the regex engine backs up
and attempts tomatch another alternative ormatches one fewer character on the quantiĕed
portion to see if the overall regex succeeds. is process of failing and trying again is called
backtracking.

When matching m/\w+ 'en'/ against the string oxen, the \w+ group ĕrst matches the whole
string (because of the greediness of +), but then the en literal at the end can’tmatch anything.
\w+ gives up one character to match oxe. en still can’t match, so the \w+ group again gives
up one character and now matches ox. e en literal can now match the last two characters
of the string, and the overall match succeeds.

While backtracking is oen useful and convenient, it can also be slow and confusing. A
colon : switches off backtracking for the previous quantiĕer or alternation. So m/ \w+:
'en'/ can never match any string, because the \w+ always eats up all word characters, and
never releases them.

e :ratchet modiĕer disables backtracking for a whole regex, which is oen desirable
in a small regex called oen from other regexes. e duplicate word search regex had to
anchor the regex to word boundaries, because \w+ would allow matching only part of a
word. Disabling backtracking produces simpler behavior where \w+ always matches a full
word:

1 my regex word { :ratchet \w+ [\' \w+]? }

2 my regex dup { <word=&word> \W+ $<word> }

3

4 # no match, doesn't match the 'and'

5 # in 'strand' without backtracking

6 'strand and beach' ~~ m/<&dup>/

However the effect of :ratchet applies only to the regex in which it appears. e outer
regex still backtracks, and can also retry the regex word at a different staring position.

97

Chapter 9 PATTERN MATCHING

e regex { :ratchet ... } pattern is common that it has its own shortcut: token { ...

}. e duplicate word searcher is idiomatic when written:

1 my token word { \w+ [\' \w+]? }

2 my regex dup { <word> \W+ $<word> }

A token that also switches on the :sigspace modiĕer is a rule:

1 my rule wordlist { <word> ** \, 'and' <word> }

9.6 Substitutions

Regexes are not only popular for data validation and extraction, but also datamanipulation.
e subst method matches a regex against a string. If a match is found, it substitutes the
portion of the string that matches with its second argument.

1 my $spacey = 'with many superfluous spaces';

2 say $spacey.subst(rx/ \s+ /, ' ', :g);

3 # output: with many superfluous spaces

e :g at the end tells the substitution to work globally to replace every match. Without :g,
it stops aer the ĕrst match.

Note the use of rx/ ... / rather than m/ ... / to construct the regex. e former
constructs a regex object. e latter not only constructs the regex object, but immediately
matches it against the topic variable $. Using m/ ... / in the call to subst creates a match
object and passes it as the ĕrst argument, rather than the regex itself.

98

9.7 Other Regex Features

Sometimes you want to call other regexes, but don’t want them to capture the matched text.
For example, when parsing a programming language you might discard whitespaces and
comments. You can achieve that by calling the regex as <.otherrule>.

For example, if you use the :sigspacemodiĕer, every continuous piece of whitespaces calls
the built-in rule <.ws>. is use of a rule rather than a character class allows you to deĕne
your own version of whitespace characters (see grammars).

Sometimes you just want to take a look ahead, and check if the next characters fulĕll some
properties without actually consuming them, so that the following parts of the regex can
still match them. is is common in substitutions. In normal English text, you always place
a whitespace aer a comma. If somebody forgets to add that whitespace, a regex can clean
up aer the lazy writer:

1 my $str = 'milk,flour,sugar and eggs';

2 say $str.subst(/',' <?before \w>/, ', ', :g);

3 # output: milk, flour, sugar and eggs

e word character aer the comma is not part of the match, because it is in a look-ahead,
which <?before ... > introduces. e leading question mark indicates an zero-width
assertion: a rule that never consumes characters from the matched string. You can turn
any call to a subrule into an zero width assertion. e built-in token <alpha> matches an
alphabetic character, so you can rewrite this example as:

1 say $str.subst(/',' <?alpha>/, ', ', :g);

An leading exclamation mark negates the meaning; another variant is:

1 say $str.subst(/',' <!space>/, ', ', :g);

99

Chapter 9 PATTERN MATCHING

A look in the opposite direction is also possible, with <?after>. In fact many built-in an-
chors can be written with look-ahead and look-behind assertions, though usually not quite
as efficient:

Table 9.3: Emulation of anchors with look-around assertions

Anchor Meaning Equivalent Assertion
^ start of string <!aer .>
^^ start of line <?aer ^ | \n >
$ end of string <!before .>
» right word boundary <?aer \w> <!before \w>

1 # TODO: non-contrived example for look-behind

9.8 Match objects

1 sub line-and-column(Match $m) {

2 my $line = ($m.orig.substr(0, $m.from).split("\n")).elems;
3 # RAKUDO workaround for RT #70003, $m.orig.rindex(...) directly fails

4 my $column = $m.from - ('' ~ $m.orig).rindex("\n", $m.from);

5 $line, $column;

6 }

7

8 my $s = "the quick\nbrown fox jumped\nover the the lazy dog";

9

10 my token word { \w+ [\' \w+]? }

11 my regex dup { <word> \W+ $<word> }

12 if $s ~~ m/ <dup> / {

13 my ($line, $column) = line-and-column($/);

14 say "Found '{$<dup><word>}' twice in a row";

15 say "at line $line, column $column";

16 }

17

100

18 # output:

19 # Found 'the' twice in a row

20 # at line 3, column 6

Every regex match returns an object of type Match. In boolean context, a match object
returns True for successful matches and False for failed ones. Most properties are only
interesting aer successful matches.

e orig method returns the string that was matched against. e from and to methods
return the positions of the start and end points of the match.

In the previous example, the line-and-column function determines the line number in
which thematch occurred by extracting the string up to thematch position ($m.orig.substr(0,
$m.from)), splitting it by newlines, and counting the elements. It calculates the column by
searching backwards from the match position and calculating the difference to the match
position.

e index method searches a string for another substring, and returns the position
of the search string.

e rindex method does the same, but searches backwards from the end of the
string, so it ĕnds the position of the last occurrence of the substring.

Using a match object as an array yields access to the positional captures. Using it as a hash
reveals the named captures. In the previous example, $<dup> is a shortcut for $/<dup> or
$/{ 'dup' }. ese captures are again Match objects, so match objects are really trees of
matches.

e caps method returns all captures, named and positional, in the order in which their
matched text appears in the source string. e return value is a list of Pair objects, the keys
of which are the names or numbers of the capture and the values the corresponding Match

objects.

101

Chapter 9 PATTERN MATCHING

1 if 'abc' ~~ m/(.) <alpha> (.) / {

2 for $/.caps {

3 say .key, ' => ', .value;

4

5 }

6 }

7

8 # Output:

9 # 0 => a

10 # alpha => b

11 # 1 => c

In this case the captures are in the same order as they are in the regex, but quantiĕers can
change that. Even so, $/.caps follows the ordering of the string, not of the regex. Any parts
of the string which match but not as part of captures will not appear in the values that caps
returns.

To access the non-captured parts too, use $/.chunks instead. It returns both the captured
and the non-captured part of thematched string, in the same format as caps, but with a tilde
~ as key. If there are no overlapping captures (which could only come from look-around
assertions), the concatenation of all the pair values that chunks returns is the same as the
matched part of the string.

102

10
Grammars

Grammars organize regexes, just like classes organize methods. e following example
demonstrates how to parse JSON, a data exchange format already introduced (multis).

1 # file lib/JSON/Tiny/Grammar.pg

2

3 grammar JSON::Tiny::Grammar {

4 rule TOP { ^[<object> | <array>]$ }

5 rule object { '{' ~ '}' <pairlist> }

6 rule pairlist { [<pair> ** [\,]]? }

7 rule pair { <string> ':' <value> }

8 rule array { '[' ~ ']' [<value> ** [\,]]? }

9

10 proto token value { <...> };

11

12 token value:sym<number> {

13 '-'?

103

Chapter 10 GRAMMARS

14 [0 | <[1..9]> <[0..9]>*]

15 [\. <[0..9]>+]?

16 [<[eE]> [\+|\-]? <[0..9]>+]?

17 }

18

19 token value:sym<true> { <sym> };

20 token value:sym<false> { <sym> };

21 token value:sym<null> { <sym> };

22 token value:sym<object> { <object> };

23 token value:sym<array> { <array> };

24 token value:sym<string> { <string> }

25

26 token string {

27 \" ~ \" [<str> | \\ <str_escape>]*

28 }

29

30 token str {

31 [

32 <!before \t>
33 <!before \n>
34 <!before \\>
35 <!before \">
36 .

37]+

38 # <-["\\\t\n]>+
39 }

40

41 token str_escape {

42 <["\\/bfnrt]> | u <xdigit>**4

43 }

44

45 }

46

47

48 # test it:

49 my $tester = '{

50 "country": "Austria",

51 "cities": ["Wien", "Salzburg", "Innsbruck"],

104

52 "population": 8353243

53 }';

54

55 if JSON::Tiny::Grammar.parse($tester) {

56 say "It's valid JSON";

57 } else {

58 # TODO: error reporting

59 say "Not quite...";

60 }

A grammar contains various named regexes. e call to JSON::Tiny.parse($string) starts
by calling TOP.

Regexes inside a grammar do not need a scope declarator, the default to the same lookup
semantics as methods in classes. e call to another regex simpliĕes to <regex name>, which
also creates a capture of the same name.

Regexes inside a grammar do not need a scope declarator, the default to the same lookup
semantics as methods in classes. e call to another regex simpliĕes to <regex name>, which
also creates a capture of the same name.

Rule TOP anchors the match to the start and end of the string, so that the whole string has
to be in valid JSON format for the match to succeed. It then either matches an <array> or
an <object>. Subsequent calls are straightforward, and reĘect the structure in which JSON
components can appear.

Regexes can be recursive. An array contains value, and in turn a value can be an array. at
won’t cause any inĕnite loops as long as at least one regex per recursive call consumes at least
one character. If a set of regexes were to call each other recursively without ever progressing
in the string, the recursion could go on inĕnitely, never progressing in the string and never
proceeding to other parts of the grammar.

ey only new regex syntax used in the JSON::Tiny grammar is the goal matching syntax
'{' ~'}' [...], which resembles '{' ... '}', but gives a better error message upon
failure. It sets the term to the right of the tilde character as the goal, and then matches the
ĕnal term [...]. If the goal does not match, Perl will issue an error.

105

Chapter 10 GRAMMARS

Another novelty is the declaration of a proto token:

1 proto token value { <...> };

2

3 token value:sym<number> {

4 '-'?

5 [0 | <[1..9]> <[0..9]>*]

6 [\. <[0..9]>+]?

7 [<[eE]> [\+|\-]? <[0..9]>+]?

8 }

9

10 token value:sym<true> { <sym> };

11 token value:sym<false> { <sym> };

e proto token syntax marks value as a set of alternatives instead of a single regex. Each
alternative has a name of the form token value:sym<thing>, which can read as alternative
of value with parameter sym set to thing. e body of such an alternative is a normal regex,
where the call <sym> matches the value of the parameter, in this example thing.

When calling the rule <value>, the grammar engine attempts to match every alternative
(and can do so in parallel). e longest match wins.

10.1 Grammar Inheritance

e similarity of grammars to classes goes deeper than storing regexes in a namespace as
a class might store methods–you can inherit from and extend grammars, mix roles into
them, and take advantage of polymorphism. In fact, a grammar is a class which by default
inherits from Grammar instead of Any.

Suppose you wante to enhance the JSON grammar to allow single-line C++ or JavaScript
comments. (ese begin with // and continue until the end of the line.) e simplest
enhancement is to allow such a comment in any place where whitespace is valid.

106

Most of the grammar uses rules, which as you may recall are like tokens with the :sigspace
modiĕer enabled. As this uses the ws token to ĕnd signiĕcant whitespace, the simplest
approach is to override that token:

1 grammar JSON::Tiny::Grammar::WithComments

2 is JSON::Tiny::Grammar {

3

4 token ws {

5 \s* ['//' \N* \n]?

6 }

7 }

8

9 my $tester = '{

10 "country": "Austria",

11 "cities": ["Wien", "Salzburg", "Innsbruck"],

12 "population": 8353243 // data from 2009-01

13 }';

14

15 if JSON::Tiny::Grammar::WithComments.parse($tester) {

16 say "It's valid (modified) JSON";

17 }

e ĕrst two lines introduce a grammar that inherits from JSON::Tiny::Grammar through
the use of the is trait. As subclasses inherit methods from superclasses, so any grammar
rule not present in the derived grammar will come from its base grammar.

In this minimal JSON grammar, whitespace is nevermandatory, so ws canmatch nothing at
all. Aer optional spaces, two slashes '//' introduce a comment, aer which must follow
an arbitrary number of non-newline characters, and then a newline. In prose, it extends to
the rest of the line.

Inherited grammars may also add variants to proto tokens:

1 grammar JSON::ExtendedNumeric is JSON::Tiny::Grammar {

2 token value:sym<nan> { <sym> }

3 token value:sym<inf> { <[+-]>? <sym> }

4 }

107

Chapter 10 GRAMMARS

In this, grammar a call to <value>matches either one of the newly added alternatives, or any
of the old alternatives from the parent grammar JSON::Tiny::Grammar. Such extensibility
is difficult to achieve with ordinary, | delimited alternatives.

10.2 Extracting data

e parse method of a grammar returns a Match object, through which you can access all
the relevant information of the match. If you were to do this yourself, you’d have to write
a function which traverses the match tree recursively to ĕnd and to extract the interesting
data. An alternative solution exists: reduction methods, also called action methods.

1 class JSON::Tiny::Actions {

2 method TOP($/) { make $/.hash.values.[0].ast }

3 method object($/) { make $<pairlist>.ast.hash }

4 method pairlist($/) { make $<pair>>>.ast }

5 method pair($/) { make $<string>.ast => $<value>.ast }

6 method array($/) { make [$<value>>>.ast] }

7 method string($/) { make join '', $/.caps>>.value>>.ast }

8

9 # TODO: make that

10 # make +$/

11 # once prefix:<+> is sufficiently polymorphic

12 method value:sym<number>($/) { make eval $/ }

13 method value:sym<string>($/) { make $<string>.ast }

14 method value:sym<true> ($/) { make Bool::True }

15 method value:sym<false> ($/) { make Bool::False }

16 method value:sym<null> ($/) { make Any }

17 method value:sym<object>($/) { make $<object>.ast }

18 method value:sym<array> ($/) { make $<array>.ast }

19

20 method str($/) { make ~$/ }

21

22 method str_escape($/) {

23 if $<xdigit> {

24 make chr(:16($<xdigit>.join));

108

25 } else {

26 my %h = '\\' => "\\",
27 'n' => "\n",
28 't' => "\t",
29 'f' => "\f",
30 'r' => "\r";
31 make %h{$/};

32 }

33 }

34 }

35

36 my $actions = JSON::Tiny::Actions.new();

37 JSON::Tiny::Grammar.parse($str, :$actions);

is example passes an actions object to the grammar’s parsemethod. Whenever the gram-
mar engine ĕnishes parsing one rule, it calls a method on the actions object with the same
name as the current rule. If no such method exists, the grammar engine calls no method
and moves along.

If a method does exist, the grammar engine passes the current match object as a positional
argument.

Each match object has a slot called ast (short for abstract syntax tree) for a payload object.
is slot can hold a custom data structure that you create from the action methods. Call-
ing make $thing in an action method sets the ast attribute of the current match object to
$thing.

In the case of the JSON parser, the payload can be the data structure that the JSON string
represents.

Although the rules and action methods live in different namespaces (and in a real-world
project probably even in separate ĕles), here they are adjacent to demonstrate their corre-
spondence:

1 rule TOP { ^ [<object> | <array>]$ }

2 method TOP($/) { make $/.hash.values.[0].ast }

109

Chapter 10 GRAMMARS

TODO: decide if $/.values could be sufficient

e rule has an alternation with two branches, object and array. Both have a named cap-
ture. When you view the match object as a hash through $/.hash, its only value is another
match object–that of the subrule that matched successfully. e action method takes the
AST attached to that match object and promotes it as its own AST by calling make.

1 rule object { '{' ~ '}' <pairlist> }

2 method object($/) { make $<pairlist>.ast.hash }

e reduction method for object extracts the AST of the pairlist submatch and turns it
into a hash by calling its hash method.

1 rule pairlist { [<pair> ** [\,]]? }

2 # TODO: make that » once RT #75434 is resolved

3 method pairlist($/) { make $<pair>>>.ast; }

e pairlist rulematchesmultiple comma-separted pairs. e reductionmethod calls the
.ast method on each matched pair and installs the result list in its own AST.

1 rule pair { <string> ':' <value> }

2 method pair($/) { make $<string>.ast => $<value>.ast }

A pair consists of a string key and a value, so the action method constructs a Perl 6 pair
with the => operator.

e other action methods work the same way. ey transform the information they extract
from the match object into “native” Perl 6 data structures, and call make to set it as their
own AST.

e action methods that belong to a proto token are parametric in the same way as the
alternative:

1 token value:sym<null> { <sym> };

2 method value:sym<null>($/) { make Any }

110

3

4 token value:sym<object> { <object> };

5 method value:sym<object>($/) { make $<object>.ast }

When a <value> call matches, the action method with the same parametrization as the
matching alternative executes.

111

11
Built-in types, operators and methods

Many operators work on a particular type of data. If the type of the operands differs from
the type of the operand, Perl will make copies of the operands and convert those to the
needed types. For example, $a + $b will convert a copy of both $a and $b to numbers
(unless they are numbers already). is implicit conversion is called coercion.

Besides operators, other syntactic elements coerce their elements: if and while coerce to
truth values (bool), for views things as lists, and so on.

11.1 Numbers

Sometimes coercion is intuitively transparent. Perl 6 has several numeric types which you
can intermix freely. For example, subtracting a Ęoating point value from an integer works,
as in 123 - 12.1e1.

113

Chapter 11 BUILT-IN TYPES, OPERATORS AND METHODS

e most important types are:

Int

Int objects store integer numbers of arbitrary size. If you write a literal that consists
only of digits, such as 12, it is an Int.

Rat

Rat, short for rational, stores fractional numbers without loss of precision. Because
Rat tracks its numerator and denominator as integers, mathematical operations on
Rats with large components can become quite slow. For this reason, rationals with
large denominators automatically degrade to Num.

Writing a fractional value with a dot as the decimal separator produces a Rat, for
example 3.14.

Num

Num is the Ęoating point type. It stores sign, mantissa, and exponent, each with a
ĕxed width. Calculations involving Num numbers are usually quite fast, but subject to
limited precision.

Numbers in scientiĕc notation such as 6.022e23 are of type Num.

Complex

Complex is the complex number type. Complex numbers have two parts to them: a
real part and in imaginary part. If either part is NaN, then the entire number may
possibly be NaN.

Numbers in the form a + bi are of type Complex.

e following operators are available for all number types:

114

1 Binary operators:

2 Operator Description

3 ** Exponentiation: $a**$b is $a to the power of $b

4 * multiplication

5 / division

6 div integer division

7 + addition

8 - subtraction

9

10 Unary operators:

11 Operator Description

12 + conversion to number

13 - negation

Mostmathematical functions are available both asmethods and functions, so you can write
both (-5).abs and abs(-5).

1 Method Description

2 abs absolute value

3 sqrt square root

4 log natural logarithm

5 log10 logarithm to base 10

6

7 ceil rounding up to an integer

8 floor rounding down to an integer

9 round rounding to next integer

10 sign -1 for negative, 0 for 0, 1 for positive values

e trigonometric functions sin, cos, tan, asin, acos, atan, sec, cosec, cotan, asec, acosec,
acotan, sinh, cosh, tanh, asinh, acosh, atanh, sech, cosech, cotanh, asech, acosech and
acotanh are available, and work in units of radians by default. You may specify the unit
with an argument of Degrees, Gradians or Circles. For example, 180.sin(Degrees) is ap-
proximately 0.

115

Chapter 11 BUILT-IN TYPES, OPERATORS AND METHODS

11.2 Strings

Strings stored as Str are sequences of characters, independent of character encoding. e
Buf type is available for storing binary data. e encode method converts a Str to Buf.
decode goes the other direction.

e following operations are available for strings:

1 Binary operators:

2 Operator Description

3 ~ concatenation: 'a' ~ 'b' is 'ab'

4 x replication: 'a' x 2 is 'aa'

5

6 Unary operators:

7 Operator Description

8 ~ conversion to string: ~1 becomes '1'

9

10 Methods:

11 .chomp remove trailing newline

12 .substr($start, $length) extract a part of the string. $length defaults

13 to the rest of the string

14 .chars number of characters in the string

15 .uc upper case

16 .lc lower case

17 .ucfirst convert first character to upper case

18 .lcfirst convert first character to lower case

19 .capitalize convert the first character of each word to upper case, and

20 all other characters to lower case

116

11.3 Bool

A Boolean value is either True or False. Any value can coerce to a boolean in boolean
context. e rules for deciding if a value is true or false depends on the type of the value:

Strings

Empty strings and "0" evaluate to False. All other strings evaluate to True.

Numbers

All numbers except zero evaluate to True.

Lists and Hashes

Container types such as lists and hashes evaluate to False if they are empty, and to
True if they contain at least one value.

Constructs such as if automatically evaluate their conditions in boolean context. You can
force an explicit boolean context by putting a ? in front of an expression. e ! preĕx
negates the boolean value.

1 my $num = 5;

2

3 # implicit boolean context

4 if $num { say "True" }

5

6 # explicit boolean context

7 my $bool = ?$num;

8

9 # negated boolean context

10 my $not_num = !$num;

117

Index

+=, 10
.* method calls, 79
.+ method calls, 79
.? method calls, 79
<=>, 23
=>, 10
~; regex meta character, 105

operator; fat arrow, 16

abstract syntax tree, 109
accessor methods, 66
action methods, 108
anonymous subroutines, 28
Any, 10
arguments, 27
arity, 59
array, 7
assignment, 7, 16
attributes, 65
autoviviĕcation, 10

behavior, 64
bless, 68
block, 7, 8, 11
Bool, 117

Buf, 116

calling sets, 79
callsame, 62
callwith, 62
candidates, 52
Capture, 42
captures, 42
class, 64
classes, 64
classes; accessors, 66
classes; attributes, 65
classes; behavior, 64
classes; encapsulation, 65
classes; has, 64
classes; methods, 66
cmp, 23
coercion, 113
Complex, 114
composition, 76
composition; conĘicts, 77
composition; methods, 77
composition; multi methods, 78
composition; resolution, 77
constraint, 41

119

Appendix INDEX

constraint; type, 40
constraints, 53
constructors, 68

does, 77, 81
double-quoted strings, 12

encapsulation, 65
enum, 57

fat arrow, 10
ĕle handle, 7
ĕles; handle, 7
ĕrst-class subroutines, 28
Ęattening composition, 76
for, 8
functions; arity, 59
functions; protos, 61
functions; substr, 59

goal matching, 105

has, 64
hash, 8

identiĕer, 7
implicit constraints, 59
inĕx, 17
Int, 114
interpolation, 12
invocant, 7, 67

JSON, 51

leg, 23
lexical, 7

Match, 101
Match.caps, 101

Match.chunks, 102
Match.from, 101
Match.orig, 101
Match.to, 101
Match; access as a hash, 101
meta operator; [], 18
meta operator; reduction, 18
method, 7
methods, 66
methods; multidispatch, 61
multidispatch, 51
multidispatch; constraints, 53
multidispatch; narrowness, 55
multimethods, 61
multis, 51

named captures, 101
nominal type, 54
Num, 114

objects; bless, 68
operator, 15
operator precedence, 20
operator; =, 16
operator; assignment, 16
operator; inĕx operators, 17
operator; max, 17
operator; postcircumĕx, 17
operator; postĕx, 17
operator; x, 19
operator;=>, 16
operators; +=, 10
operators; ., 67
operators; m//, 98
operators; postincrement, 10
operators; preincrement, 10

120

operators; print, 12
operators; rx//, 98
operators; say, 12
operators; trigonometry, 115

pair, 10, 16
parameter, 30
parameter type constraint, 40
parameters; anonymous, 57
postcircumĕx, 17
postĕx, 17
postincrement, 10
precedence, 20
preincrement, 10
print, 12
printf, 19
proto token, 105
protos, 61

Rakudo, 3
Rat, 114
rational type, 114
reduction methods, 108
regex, 87
regex; \w, 89
regex; * quantiĕer, 91
regex; ** quantiĕer, 91
regex; + quantiĕer, 91
regex; . character, 88
regex; :, 97
regex; :g, 98
regex; :i, 96
regex; :ignorecase modiĕer, 96
regex; :ratchet, 97
regex; :s modiĕer, 96
regex; :sigspace modiĕer, 96

regex; ? quantiĕer, 91
regex; $, 92
regex; $/, 93
regex; ^, 92
regex; alternation, 92
regex; anchors, 92
regex; avoid captures, 99
regex; backreference, 95
regex; backtracking, 97
regex; captures, 93
regex; character class addition, 90
regex; character class subtraction, 90
regex; character range, 90
regex; custom character classes, 89
regex; disable backtracking, 97
regex; global substitution, 98
regex; greedy matching, 91
regex; grouping, 92
regex; lookahead, 99
regex; Match object, 101
regex; metasyntactic characters, 88
regex; modiĕers, 96
regex; named, 95
regex; named captures, 101
regex; negative look-ahead assertion, 99
regex; non-greedy matching, 91
regex; quantiĕed capture, 93
regex; quantiĕer, 91
regex; rule, 98
regex; special characters, 88
regex; string end anchor, 92
regex; string start anchor, 92
regex; subrule, 95
regex; token, 97
regex; zero-width assertion, 99
regular expressions, 87

121

Appendix INDEX

repetition operator, 19
required methods, 79
return, 39
return value, 27
return; implicit, 39
role, 73
roles, 73
roles; requirements, 79
roles; runtime application, 80
rule, 98

say, 12
scalar, 7
scoping; subroutines, 28
sigil, 7
sigils; &, 65
signature, 27
signature unpacking, 45
signatures; subroutines, 30
single-quoted strings, 12
slurpy, 37
sort; stable, 11
stable sort, 11
state, 64
statement, 7
Str, 116
string, 7
string literal, 7
strings, 116
strings; double-quoted, 12
strings; literal, 7
strings; single-quoted, 12
subroutine, 27
subroutines; anonymous, 28
subroutines; declaration, 27
subroutines; ĕrst-class, 28

subroutines; scoping, 28
subroutines; signature, 30
subrule, 95
subset type, 53
subsignature, 45
subst, 98
substitutions, 98
substr, 59

term, 17
token, 97
topic, 11
topic variable, 11
traits; implicit constraints, 59
traits; is rw, 66
trigonometric functions, 115
twigils, 65
twigils; , 65
twigils; ., 66
twigils; accessors, 66
type, 113
type capture, 57
type object, 64
types; Bool, 117
types; Buf, 116
types; capture, 57
types; Complex, 114
types; constraints, 53
types; Int, 114
types; nominal, 54
types; Num, 114
types; Rat, 114
types; rational, 114
types; Str, 116
types; subset, 53

units, 115

122

unpacking, 45

v6, 7
value identity, 21
variable; scalar, 7
variables; $, 11
variables; lexical, 7

where, 41

123

	Preface
	Audience
	Format of this book
	Relationship between Perl 6 and Perl 5
	Perl 6 implementations
	Installing Rakudo
	Executing programs
	Getting involved

	The Basics
	Exercises

	Operators
	A Word on Precedence
	Comparisons and Smart Matching
	Numeric Comparisons
	String Comparisons
	Smart Matching

	Subs and Signatures
	Declaring A Subroutine
	Adding Signatures
	The Basics
	Passing Arrays, Hashes and Code
	Interpolating Arrays and Hashes
	Optional Parameters
	Named Parameters
	Slurpy Parameters

	Returning Results
	Working With Types
	Basic Types
	Adding Constraints

	Captures
	Creating And Using A Capture
	Captures In Signatures

	Unpacking
	Currying
	Introspection

	Multis
	Constraints
	Narrowness
	Multiple arguments
	Bindability checks
	Nested Signatures in Multi-dispatch
	Protos
	Multi Methods
	Toying with the candidate list

	Classes and Objects
	Starting with class
	I can has state?
	Methods
	Constructors
	Consuming our class
	Exercises

	Roles
	What is a role?
	Compile Time Composition
	Multi-methods and composition
	Calling all candidates
	Expressing requirements

	Runtime Application of Roles
	Differences from compile time composition
	The but operator

	Parametric Roles

	Subtypes
	Pattern matching
	Anchors
	Captures
	Named regexes
	Modifiers
	Backtracking control
	Substitutions
	Other Regex Features
	Match objects

	Grammars
	Grammar Inheritance
	Extracting data

	Built-in types, operators and methods
	Numbers
	Strings
	Bool

