

Credits

Text Jonathan S. Duff, Moritz Lenz, Carl Mäsak, Patrick R. Michaud, Jonathan Worthing-
ton.

Front cover Sebastian Riedel (http://kraih.com)

Fonts Adobe Minion® Pro, Adobe Myriad® Pro, B&H Luxi Mono

LATEX-Layout Nikolai Prokoschenko, Luc St-Louis et al. Special thanks to Konrad Mühler
for his LATEX tips collection (http://www.kfiles.de/latex.php)

Editor chromatic

Further contributions Carlin Bingham, Tim Bunce, Nuno Carvalho, Will Coleda,
Patrick Donelan, James E. Keenan, Alex Elsayed, Jason Felds, Matt Follett, Solomon
Foster, Piotr Fusik, Bruce Gray, Prakash Kailasa, Matt Kraai, molecules, Hongwen
Qiu, Dean Serenevy, Aaron Sherman, snarkyboojum, Tadeusz Sośnierz, Gabor Sz-
abo, Ralf Valerien, Przemysław Wesołek,

Except where otherwise noted, this work is licensed under
http://creativecommons.org/licenses/by-nc-sa/3.0/

http://kraih.com
http://www.kfiles.de/latex.php

Contents

1 Preface 1

1.1 Audience . 2

1.2 Format of this book . 2

1.3 Relationship between Perl 6 and Perl 5 . 2

1.4 Perl 6 implementations . 3

1.5 Installing Rakudo . 3

1.6 Executing programs . 3

1.7 Getting involved . 4

2 The Basics 5

2.1 Exercises . 13

3 Operators 15

3.1 A Word on Precedence . 19

3.2 Comparisons and Smart Matching . 20

3.2.1 Numeric Comparisons . 22

3.2.2 String Comparisons . 23

3.2.3 Smart Matching . 24

4 Subs and Signatures 27

4.1 Declaring A Subroutine . 27

4.2 Adding Signatures . 30

4.2.1 The Basics . 30

i

4.2.2 Passing Arrays, Hashes and Code . 31

4.2.3 Interpolating Arrays and Hashes . 32

4.2.4 Optional Parameters . 33

4.2.5 Named Arguments and Parameters 33

4.2.6 Slurpy Parameters . 38

4.3 Returning Results . 39

4.4 Working With Types . 40

4.4.1 Basic Types . 41

4.4.2 Adding Constraints . 41

4.5 Captures . 42

4.5.1 Creating And Using A Capture . 43

4.5.2 Captures In Signatures . 44

4.6 Unpacking . 45

4.7 Currying . 46

4.8 Introspection . 47

5 Classes and Objects 51

5.1 Starting with class . 52

5.2 I can has state? . 53

5.3 Methods . 54

5.4 Constructors . 56

5.5 Consuming our class . 56

5.6 Inheritance . 57

5.6.1 Overriding Inherited Methods . 59

5.6.2 Multiple Inheritance . 60

5.7 Introspection . 61

5.8 Exercises . 62

6 Multis 65

6.1 Constraints . 67

6.2 Narrowness . 69

6.3 Multiple arguments . 70

ii

6.4 Bindability checks . 72

6.5 Nested Signatures in Multi-dispatch . 73

6.6 Protos . 74

6.7 Toying with the candidate list . 75

7 Roles 77

7.1 What is a role? . 80

7.2 Compile Time Composition . 81

7.2.1 Multi-methods and composition . 82

7.2.2 Calling all candidates . 83

7.2.3 Expressing requirements . 83

7.3 Runtime Application of Roles . 84

7.3.1 Differences from compile time composition 84

7.3.2 The but operator . 85

7.4 Parametric Roles . 85

7.5 Roles and Types . 85

8 Subtypes 87

9 Patternmatching 91

9.1 Anchors . 96

9.2 Captures . 97

9.3 Named regexes . 98

9.4 Modifiers . 99

9.5 Backtracking control . 100
9.6 Substitutions . 101
9.7 Other Regex Features . 102
9.8 Match objects . 103

10Grammars 107

10.1 Grammar Inheritance . 110
10.2 Extracting data . 112

11Built-in types, operators andmethods 117

iii

11.1 Numbers . 117
11.2 Strings . 119
11.3 Bool . 121

iv

1
Preface

Perl 6 is a language specification for which multiple compilers and interpreters exist in var-
ious stages of completeness. ese implementations have in turn influenced the design
of the language by highlighting misfeatures, contradictions, or features of difficult imple-
mentation and little benefit. is process of iteration has produced a more cohesive and
consistent language specification.

Perl 6 is versatile, intuitive, and flexible. It embraces several paradigms like procedural,
object oriented, and functional programming, and offers powerful tools for parsing text.

is book is a work-in-progress. Even releases will contain some amount of TODO comments
prior to the printing of the book. We’ve le them in because they might serve as useful cues
for the reader as well as for us authors about what remains to be done. Even so, we pray the
reader’s indulgence and understanding.

1

Chapter 1 PREFACE

1.1 Audience

is book is primarily for people who want to learn Perl 6. It is a series of tutorials, not a
comprehensive reference. We expect some experience in another programming language,
though no prior knowledge of Perl is necessary. Aer working through this book, you
should have a solid grasp of the basics of Perl 6 sufficient to solve your own problems with
Perl 6.

1.2 Format of this book

Each chapter opens with a reasonably complete example that illustrates the topic of the
chapter. We intend these examples to demonstrate how to use the features, techniques, and
idioms explained in the chapter in real programs. Our goal is to convey the “flavor” of
writing Perl 6 programs so that the reader may proceed to write their own native Perl 6
programs rather than programs that resemble some other language1.

1.3 Relationship between Perl 6 and Perl 5

Perl 6 is the newest member of the family of languages known as Perl. It represents a major
break in syntactic and semantic compatibility from Perl 5, thus the increase from 5 to 6.
However, this does not mean that Perl 5 is going away. In fact, quite the opposite. Both
Perl 5 and Perl 6 have active developer communities which mold the languages. Perl 5 de-
velopers try to extend the language in various ways while keeping backwards compatibility
with past versions of Perl. Perl 6 developers extend the language by adding new syntactic
and semantic features that enable more power and expressiveness without the restriction
of backward compatibility with Perl 5 or earlier versions.

Some might ask, “Why call it Perl if it’s a different language?” Perl is more than the va-
garies of syntax. Perl is philosophy (there’s more than one way to do it; easy things should
be easy, and hard things possible); Perl is custom (comprehensive testing, idioms); Perl is
architectural edifice (the Comprehensive Perl Archive Network); and Perl is community

1 Some programmers can still write Fortran in any language, however :)

2

(perl5-porters, perl6-language). Both Perl 5 and Perl 6 share these attributes to varying de-
grees. As well, Perl is syncretic. Just as Perl borrows good ideas from other languages, so
Perl 5 and Perl 6 share features.

1.4 Perl 6 implementations

Perl 6 is a specification. Any implementation that passes the official test suite can call itself
“Perl 6”. Several implementations exist at various levels of maturity. All of the examples
in this book will run with the Rakudo Perl 6 Compiler, but they are in no way specific to
Rakudo–any sufficiently advanced Perl 6 implementation can run them. Good luck and–as
the Perl 6 community oen says–have fun!

1.5 Installing Rakudo

For complete instructions for downloading and installing Rakudo, see http://www.rakudo.
org/how-to-get-rakudo. Source code releases are available from http://github.com/rakudo/

rakudo/downloads. A binary release for windows is available from http://sourceforge.

net/projects/parrotwin32/files/.

1.6 Executing programs

To run a Perl 6 programwith Rakudo, include the installation directory in your system PATH

variable and issue a command like:

$ perl6 hello.pl

If you invoke the Rakudo compiler without an explicit script to run, it enters a small inter-
active mode that allows the execution of Perl 6 statements from the command line.

3

http://www.rakudo.org/how-to-get-rakudo
http://www.rakudo.org/how-to-get-rakudo
http://github.com/rakudo/rakudo/downloads
http://github.com/rakudo/rakudo/downloads
http://sourceforge.net/projects/parrotwin32/files/
http://sourceforge.net/projects/parrotwin32/files/

Chapter 1 PREFACE

1.7 Getting involved

If you are inspired by the contents of this book and want to contribute to the Perl 6 com-
munity, there are more resources available to you:

World Wide Web

e Perl 6 homepage at http://perl6.org/ links to many useful resources.

IRC

e channel #perl6 on irc.freenode.net discusses all things Perl 6.

Mailing lists

If you need programming help with Perl 6, send an email to perl6-users@perl.org.

For issues regarding the Perl 6 language specification, contact perl6-language@perl.org.
For issues regarding Perl 6 compilers, send email to perl6-compiler@perl.org.

4

2
The Basics

Perl originated as a programming language intended to gather and summarize information
from text files. It’s still strong in text processing, but Perl 5 is also a powerful general-
purpose programming language. Perl 6 is even better.

Suppose that you host a table tennis tournament. e referees tell you the results of each
game in the format Player 1 vs Player 2 | 3:2, which means that Player 1 won against
Player 2 by 3 to 2 sets. You need a script that sums up how many matches and sets each
player has won to determine the overall winner.

e input data looks like this:

1 Beth Ana Charlie Dave

2 Ana vs Dave | 3:0

3 Charlie vs Beth | 3:1

4 Ana vs Beth | 2:3

5 Dave vs Charlie | 3:0

6 Ana vs Charlie | 3:1

7 Beth vs Dave | 0:3

5

Chapter 2 THE BASICS

e first line is the list of players. Every subsequent line records a result of a match.

Here’s one way to solve that problem in Perl 6:

1 use v6;

2

3 my $file = open 'scores';

4 my @names = $file.get.split(' ');

5

6 my %matches;

7 my %sets;

8

9 for $file.lines -> $line {

10 my ($pairing, $result) = $line.split(' | ');

11 my ($p1, $p2) = $pairing.split(' vs ');

12 my ($r1, $r2) = $result.split(':');

13

14 %sets{$p1} += $r1;

15 %sets{$p2} += $r2;

16

17 if $r1 > $r2 {

18 %matches{$p1}++;

19 } else {

20 %matches{$p2}++;

21 }

22 }

23

24 my @sorted = @names.sort({ %sets{$_} }).sort({ %matches{$_} }).reverse;

25

26 for @sorted -> $n {

27 say "$n has won %matches{$n} matches and %sets{$n} sets";

28 }

is produces the output:

Ana has won 2 matches and 8 sets

Dave has won 2 matches and 6 sets

Charlie has won 1 matches and 4 sets

Beth has won 1 matches and 4 sets

6

Every Perl 6 program should begin with use v6;. is line tells the compiler which version
of Perl the program expects. Should you accidentally run the file with Perl 5, you’ll get a
helpful error message.

A Perl 6 program consists of zero or more statements. A statement ends with a semicolon
or a curly bracket at the end of a line:

1 my $file = open 'scores';

my declares a lexical variable. Lexical variables are visible only in the current block. If there’s
no enclosing block, it’s visible throughout the remainder of the file. A block is any part of
the code enclosed between curly braces { }.

A variable name begins with a sigil, which is non-alpha-numeric symbol such as $, @, %, or
&–or occasionally the double colon ::. e sigils usually restrict the variable to a particular
type, such as a single value or a compound value. Aer the sigil comes an identifier, which
may consist of letters, digits and the underscore. Between letters you can also use a dash -

or an apostrophe ', so isn't and double-click are valid identifiers.

e $ sigil indicates a scalar variable, which indicates that the variable stores a single value.

e built-in function open opens a file, here named scores, and returns a file handle–an
object representing that file. e equality sign = assigns that file handle to the variable on
the le, which means that $file now stores the file handle.

'scores' is a string literal. A string is a piece of text, and a string literal is a string which
appears directly in the program. In this line, it’s the argument provided to open.

1 my @names = $file.get.split(' ');

e right-hand side calls a method –a named group of behavior– named get on the file
handle stored in $file. e get method reads and returns one line from the file, removing
the line ending. split is also amethod, called on the string returned from get. split’s single
argument is a string containing a space character. split decomposes its invocant–the string
onwhich it operates–into a list of strings. It turns the single string 'Beth Ana Charlie Dave'

into the list of strings 'Beth', 'Ana', 'Charlie', 'Dave'. Finally, this list gets stored in
the array @names. e @ sigil marks the declared variable as an Array. Arrays store ordered
lists.

7

Chapter 2 THE BASICS

Splitting on a single blank is not very robust, and breaks the code when spaces at
the end of a line, or more than one blank in a row, or even an empty line in the input
file. You will learn a more robust method for data extraction in the chapter about
regexes.

TODO: proper cross-link

1 my %matches;

2 my %sets;

ese two lines of code declare two hashes. e % sigil marks each variable as a Hash. A
Hash is an unordered collection of pairs of keys and values. Other programming languages
call that a hash table, dictionary, or map. You can query a hash table for the value that
corresponds to a certain $key with %hash{$key}1.

In the score counting program, %matches stores the number ofmatches each player has won.
%sets stores the number of sets each player has won.

Sigils indicate the default accessmethod for a variable. Variables with the @ sigil are accessed
positionally; variables with the % sigil are accessed by string key. e $ sigil, however, indi-
cates a general container that can hold anything and be accessed in any manner. A scalar
can even contain a compound object like an Array or a Hash; the $ sigil signifies that it
should be treated as a single value, even in a context that expects multiple values (as with
an Array or Hash).

1 for $file.lines -> $line {

2 ...

3 }

for produces a loop that runs the block delimited by curly brackets and containing ...

once for each item of the list, setting the variable $line to the current value of each iteration.
$file.lines produces a list of the lines read from the file scores, starting with the line where
the previous calls to $file.get le off, and going all the way to the end of the file.

1 Unlike Perl 5, in Perl 6 the sigil does not change when accessing an array or hash with [] or { }. is is
called sigil invariance.

8

During the first iteration, $line will contain the string Ana vs Dave | 3:0. During the
second, Charlie vs Beth | 3:1, and so on.

1 my ($pairing, $result) = $line.split(' | ');

my can declare multiple variables simultaneously. e right-hand side of the assignment is
again a call to split, this time splitting on a vertical bar surrounded by spaces. $pairing

gets the first item of the returned list, and $result the second.

Aer processing the first line, $pairingwill hold the string Ana vs Dave and $result 3:0.

e next two lines follow the same pattern:

1 my ($p1, $p2) = $pairing.split(' vs ');

2 my ($r1, $r2) = $result.split(':');

e first extracts and stores the names of the two players in the variables $p1 and $p2. e
second extracts the results for each player and stores them in $r1 and $r2.

Aer processing the first line of the file, the variables contain the values:

Table 2.1: Contents of Variables

Variable Contents
$line 'Ana vs Dave | 3:0'

$pairing 'Ana vs Dave'

$result '3:0'

$p1 'Ana'

$p2 'Dave'

$r1 '3'

$r2 '0'

e program then counts the number of sets each player has won:

1 %sets{$p1} += $r1;

2 %sets{$p2} += $r2;

9

Chapter 2 THE BASICS

is is a shortcut for:

1 %sets{$p1} = %sets{$p1} + $r1;

2 %sets{$p2} = %sets{$p2} + $r2;

+= $r1 means increase the value in the variable on the le by $r1. In the first iteration
%sets{$p1} is not yet set, so it defaults to a special value called Any. e addition and incre-
menting operators treat Any as a number with the value of zero.

Before these two lines execute, %sets is empty. Adding to an entry not in the hash will
cause that entry to spring into existence just-in-time, with a value starting at zero. (is is
autovivification). Aer these two lines have run for the first time, %sets contains 'Ana' =>

3, 'Dave' => 0. (e fat arrow => separates key and value in a Pair.)

1 if $r1 > $r2 {

2 %matches{$p1}++;

3 } else {

4 %matches{$p2}++;

5 }

If $r1 has a larger value than $r2, %matches{$p1} increments by one. If $r1 is not larger
than $r2, %matches{$p2} increments. Just as in the case of +=, if either hash value did not
exist previously, it is autovivified by the increment operation.

$thing++ is short for $thing += 1 or $thing = $thing + 1, with the small exception that the
return value of the expression is $thing before the increment, not the incremented value. If,
as you can do in many other programming languages, you can use ++ as a prefix, it returns
the incremented value; my $x = 1; say ++$x prints 2.

1 my @sorted = @names.sort({ %sets{$_} }).sort({ %matches{$_} }).reverse;

is line consists of three individually simple steps. An array’s sortmethod returns a sorted
version of the array’s contents. However, the default sort on an array sorts by its contents.
To print player names in winner-first order, the code must sort the array by the scores of the
players, not their names. e sortmethod’s argument is a block used to transform the array
elements (the names of players) to the data by which to sort. e array items are passed in
through the topic variable $.

10

You have seen blocks before: both the for loop -> $line { ... } and the if statement
worked on blocks. A block is a self-contained piece of Perl 6 codewith an optional signature
(the -> $line part). See signatures for more information.

e simplest way to sort the players by score would be @names.sort({ %matches{$ } }),
which sorts by number ofmatcheswon. HoweverAna andDave have bothwon twomatches.
at simple sort doesn’t account for the number of sets won, which is the secondary crite-
rion to decide who has won the tournament.

When two array items have the same value, sort leaves them in the same order as it found
them. Computer scientists call this a stable sort. e program takes advantage of this prop-
erty of Perl 6’s sort to achieve the goal by sorting twice: first by the number of sets won
(the secondary criterion), then by the number of matches won.

Aer the first sorting step, the names are in the order Beth Charlie Dave Ana. Aer the
second sorting step, it’s still the same, because no one has won fewer matches but more sets
than someone else. Such a situation is entirely possible, especially at larger tournaments.

sort sorts in ascending order, from smallest to largest. is is the opposite of the desired
order. erefore, the code calls the .reverse method on the result of the second sort, and
stores the final list in @sorted.

1 for @sorted -> $n {

2 say "$n has won %matches{$n} matches and %sets{$n} sets";

3 }

To print out the players and their scores, the code loops over @sorted, setting $n to the
name of each player in turn. Read this code as “For each element of sorted, set $n to the
element, then execute the contents of the following block.” say prints its arguments to the
standard output (the screen, normally), followed by a newline. (Use print if you don’t want
the newline at the end.)

When you run the program, you’ll see that say doesn’t print the contents of that string
verbatim. In place of $n it prints the contents of $n– the names of players stored in $n.
is automatic substitution of code with its contents is interpolation. is interpolation
happens only in strings delimited by double quotes "...". Single quoted strings '...' do
not interpolate:

11

Chapter 2 THE BASICS

1 my $names = 'things';

2 say 'Do not call me $names'; # Do not call me $names

3 say "Do not call me $names"; # Do not call me things

Double quoted strings in Perl 6 can interpolate variables with the $ sigil as well as blocks of
code in curly braces. Since any arbitrary Perl code can appear within curly braces, Arrays
and Hashes may be interpolated by placing them within curly braces.

Arrays within curly braces are interpolated with a single space character between each item.
Hashes within curly braces are interpolated as a series of lines. Each line will contain a key,
followed by a tab character, then the value associated with that key, and finally a newline.

1 say "Math: { 1 + 2 }" # Math: 3

2 my @people = <Luke Matthew Mark>;

3 say "The synoptics are: {@people}" # The synoptics are: Luke Matthew Mark

4

5 say "{%sets}"; # From the table tennis tournament

6

7 # Charlie 4

8 # Dave 6

9 # Ana 8

10 # Beth 4

When array and hash variables appear directly in a double-quoted string (and not inside
curly brackets), they are only interpolated if their name is followed by a postcircumfix –
a bracketing pair that follows a statement. It’s also ok to have a method call between the
variable name and the postcircumfix.

1 my @flavours = <vanilla peach>;

2

3 say "we have @flavours"; # we have @flavours

4 say "we have @flavours[0]"; # we have vanilla

5 # so-called "Zen slice"

6 say "we have @flavours[]"; # we have vanilla peach

7

8 # method calls ending in postcircumfix

9 say "we have @flavours.sort()"; # we have peach vanilla

10

11 # chained method calls:

12

12 say "we have @flavours.sort.join(', ')";

13 # we have peach, vanilla

2.1 Exercises

1. e input format of the example program is redundant: the first line containing the name
of all players is not necessary, because you can find out which players participated in the
tournament by looking at their names in the subsequent rows.

How can you change the program if the first input line is omitted? Hint: %hash.keys returns
a list of all keys stored in %hash.

Answer: Remove the line my @names = $file.get.split(' ');, and change:

1 my @sorted = @names.sort({ %sets{$_} }).sort({ %matches{$_} }).reverse;

... into:

1 my @sorted = %sets.keys.sort({ %sets{$_} }).sort({ %matches{$_} }).reverse;

2. Instead of removing the redundancy, you can also use it to warn if a player appears that
wasn’t mentioned in the first line, for example due to a typo. How would you modify your
program to achieve that?

Answer: Introduce another hash with the names of the legitimate players as keys, and look
in this hash when the name of a player is read:

1 ...

2 my @names = $file.get.split(' ');

3 my %legitimate-players;

4 for @names -> $n {

5 %legitimate-players{$n} = 1;

6 }

7

8 ...

9

13

Chapter 2 THE BASICS

10 for $file.lines -> $line {

11 my ($pairing, $result) = $line.split(' | ');

12 my ($p1, $p2) = $pairing.split(' vs ');

13 for $p1, $p2 -> $p {

14 if !%legitimate-players{$p} {

15 say "Warning: '$p' is not on our list!";

16 }

17 }

18

19 ...

20 }

14

3
Operators

Operators are very short names for oen used routines. ey have special calling syntax,
and can manipulate each other.

Consider the table tennis example from the previous chapter. Suppose you want to plot the
number of sets that each player won in a tournament. is example makes a very simple
text output by printing X characters to represent horizontal bars:

1 use v6;

2

3 my @scores = 'Ana' => 8, 'Dave' => 6, 'Charlie' => 4, 'Beth' => 4;

4

5 my $screen-width = 30;

6

7 my $label-area-width = 1 + [max] @scores».key».chars;

8 my $max-score = [max] @scores».value;

9 my $unit = ($screen-width - $label-area-width) / $max-score;

10

11 for @scores {

12 my $format = '%- ' ~ $label-area-width ~ "s%s\n";

15

Chapter 3 OPERATORS

13 printf $format, .key, 'X' x ($unit * .value);

14 }

is program produces the output:

Ana XXXXXXXXXXXXXXXXXXXXXX

Dave XXXXXXXXXXXXXXXX

Charlie XXXXXXXXXXX

Beth XXXXXXXXXXX

e line:

1 my @scores = 'Ana' => 8, 'Dave' => 6, 'Charlie' => 4, 'Beth' => 4;

... already contains three different operators: =, =>, and ,.

e = operator is the assignment operator–it takes the values from the right-hand side, and
stores them in the variable on the le-hand side, here @scores.

Like other languages that have adopted a similar syntax to C, Perl 6 allows for a
shorthand way to write certain assignments. You can express any assignment of the
form $var = $var op EXPR as $var op= EXPR. For example, ~ (tilde) is the string
concatenation operator; to append some text to the end of a string, you can write
$string ~= "text", which is equivalent to $string = $string ~"text".

e => operator (the fat arrow) constructs Pair objects. A Pair stores a key and a value; the
key is on the le-hand side of the => operator, the value on the right. is operator also has
a special feature: it causes the parser to interpret any bare identifier on the le-hand side as
a string. You could also write the example line as:

1 my @scores = Ana => 8, Dave => 6, Charlie => 4, Beth => 4;

Finally, the , operator constructs a Parcel, which is a sequence of objects. In this case the
objects are pairs.

16

All of the three operators above are infix operators, which means they stand in between
two terms. A term can be a literal like 8 or 'Dave', or a combination of other terms and
operators.

e previous chapter already used other types of operators. It contained the statement
%games{$p1}++;. e postcircumfix operator {...} occurs aer (the post) a term, and con-
sists of two symbols (an opening and a closing curly bracket) which enclose (circumfix)
another term. Aer this postcircumfix operator is an ordinary postfix operator with name
++, which increments the value it qualifies. You may not use whitespace between a term
and its postfix or postcircumfix operators.

Another operator type is the prefix operator, which occurs before a term. An example is the
- operator, which negates the following numeric value, as in my $x = -4.

e - operator can also mean subtraction, so say 5 - 4 will print a 1. To distinguish the
prefix operator - from the infix operator -, the Perl 6 parser always keeps track of whether
it expects an infix operator or a term. A term can have zero or more prefix operators, so
you can actually write say 4 + -5. Aer the + (an infix operator), the compiler expects a
term, so as to interpret the - as a prefix operator to the term 5.

e next line containing new features is:

1 my $label-area-width = 1 + [max] @scores».key».chars;

It begins harmlessly with a variable declaration my $label-area-width and an assignment.
Next comes a simple numeric addition, 1 + e right side of the + operator is more
complicated.

e infix max operator returns the greater of two values, so 2 max 3 returns 3. Square brackets
around an infix operator cause Perl to apply the operator to a list element by element. [max]
1, 5, 3, 7 is the same as 1 max 5 max 3 max 7 and evaluates to 7.

Likewise, you can write [+] to get the sum of a list of values, [*] for the product, and [<=]

to check if a list is ordered by ascending values.

Next comes the expression @scores».key».chars. Just like @variable.method calls amethod
on @variable, @array».method calls a method for each item in @array and returns the list
of the return values.

17

Chapter 3 OPERATORS

» is a hyper operator. It is also a Unicode character. If your operating system does not make
it easy to write it you can also write it using two angle brackets (>>)1 @scores».key is a list
of all the keys of the pair objects in @scores, and @scores».key».chars is a list of the length
of all keys in @scores.

e expression [max] @scores».key».chars gives the largest of these values. It is the same
as:

1 @scores[0].key.chars

2 max @scores[1].key.chars

3 max @scores[2].key.chars

4 max ...

ese circumfix square brackets are the reduction meta operator, which transforms the en-
closed infix operator into an operator that expects a list (a listop), and carries out the oper-
ation between each two consecutive list items.

For plotting the names of the players and bar charts, the program needs to know how much
space to allocate for the player names. Adding 1 to it leaves space for a single blank space
between the name of the longest player and the le edge of the bars.

e program next determines the maximum score:

1 my $max-score = [max] @scores».value;

e drawing area has the width $screen-width - $label-area-width, so for each score, it
should print:

1 my $unit = ($screen-width - $label-area-width) / $max-score;

... amount of X characters. is expression uses the infix operators - and / for numerical
calculations.

Now all the necessary informations are in place, and the chart can print:

1 Ubuntu 10.4: In System/Preferences/Keyboard/Layouts/Options/Compose Key position select one of the
keys to be the “Compose” key. en press Compose-key and the “greater than” key twice.

18

1 for @scores {

2 my $format = '%- ' ~ $label-area-width ~ "s%s\n";
3 printf $format, .key, 'X' x ($unit * .value);

4 }

ese lines loop over the items in @scores, binding them to the special variable $ one at a
time. For each item, the program uses the printf built-in function to print both the name
of the player and a bar. is function is similar to printf in C and Perl 5. It takes a format
string, which specifies how to print the following parameters. If $label-area-width is 8,
the format string is "%- 8s%s\n", which means a string ('s') filled to 8 spaces (' 8') and
le-justified ('-'), followed by another string and a newline.

e first string is the name of the player and the second is the bar.

e infix x operator, or repetition operator, generates this bar. It takes a string on the le-
hand side and a number on the right-hand side, and sticks the strings together as many
times as the number specifies, so 'ab' x 3 returns the string 'ababab'. .value returns the
value of the current pair, ($unit * .value) multiplies that values with $unit, and 'X' x

($unit * .value) returns as that many X characters.

3.1 A Word on Precedence

e explanations of this example have one implication which is not entirely obvious. In the
line:

1 my @scores = 'Ana' => 8, 'Dave' => 6, 'Charlie' => 4, 'Beth' => 4;

... the right-hand side of the assignment produces a list (because of the , operator) that
is made of pairs (because of =>), and the result is then assigned to the array variable. You
could think of other ways for Perl 6 to interpret this program. Perl 5 will interpret it as:

1 (my @scores = 'Ana') => 8, 'Dave' => 6, 'Charlie' => 4, 'Beth' => 4;

... so that @scores will contain only one item. e rest of the expression is merely a list of
constants evaluated, then discarded.

19

Chapter 3 OPERATORS

Precedence rules govern how a parser will parse this line. Perl 6’s precedence rules state that
the infix => operator binds its arguments more tightly than the infix , operator, which in
turn binds more tightly than the = assignment operator.

ere are actually two assignment operators with different precedence. When the
right-hand side is a scalar, the item assignment operator with tight precedence is
used, otherwise the loose-precedence list assignment operator is used. is allows
the two expressions $a = 1, $b = 2 and @a = 1, 2 to bothmean something sensible:
assignment to two variables in a list, and assignment of a two-item list to a single
variable>.

Perl 6’s precedence rules allow you to express many common operations naturally, with-
out thinking about precedence at all. If you want to force a different parsing precedence,
surround an expression with parentheses, so that this new group has the tightest possible
precedence:

1 say 5 - 7 / 2; # 5 - 3.5 = 1.5

2 say (5 - 7) / 2; # (-2) / 2 = -1

3.2 Comparisons and Smart Matching

ere are several ways to compare objects in Perl. You can test for value equivalence us-
ing the === infix operator. For immutable objects2, this is an ordinary value comparison.
"hello" === "hello" is true because both strings are immutable and have the same value.

Formutable objects, === compares their identities. Two objects only share the same identity
if, in fact, they are the same object. Even if the two arrays @a and @b contain the same values,
if they containers are two separate array objects, they will have different identities and will
not be equivalent when compared with ===:

1 my @a = 1, 2, 3;

2 my @b = 1, 2, 3;

2 Objects whose values can not be changed; literal values. For instance, the literal 7 will always and forever
be just a 7.

20

Table 3.1: Precedence table

Examples Name
(tightest precedence)

(), 42.5 term
42.rand method calls and postcircumfixes
$x++ autoincrement and autodecrement
$x**2 exponentiation operator
?$x, !$x boolean prefix
+$x, ~$x prefix context operators
2*3, 7/5 multiplicative infix operators
1+2, 7-5 additive infix operators
$x x 3 replication operators
$x ~".\n" string concatenation
1&2 junctive AND
1|2 junctive OR
abs $x named unary prefix
$x cmp 3 non-chaining binary operators
$x == 3 chaining binary operators
$x && $y tight AND infix
$x || $y tight OR infix
$x > 0 ?? 1 !! -1 conditional operator
$x = 1 item assignment
not $x loose unary prefix
1, 2 comma
1, 2 Z @a list infix
@a = 1, 2 list prefix, list assignment
$x and say "Yes" loose AND infix
$x or die "No" loose OR infix
; statement terminator

(loosest precedence)

3

4 say @a === @a; # 1

5 say @a === @b; # 0

21

Chapter 3 OPERATORS

6

7 # these use identity for value

8

9 say 3 === 3; # 1

10 say 'a' === 'a'; # 1

11

12 my $a = 'a';

13 say $a === 'a'; # 1

e eqv operator returns True only if two objects are of the same type and the same struc-
ture. With @a and @b as defined in the previous example, @a eqv @b is true because @a and
@b contain the same values each. On the other hand '2' eqv 2 returns False, because the
le argument is a string, the right an integer and so they are not of the same type.

3.2.1 Numeric Comparisons

You can ask if two objects have the same numeric value with the == infix operator. If one
of the objects is not numeric, Perl will do its best to make it numeric before doing the
comparison. If there is no good way to convert an object to a number, Perl will use the
default of 0.

1 say 1 == 1.0; # 1

2 say 1 == '1'; # 1

3 say 1 == '2'; # 0

4 say 3 == '3b' # 1

e operators <, <=, >=, and > compare the relative size of numbers. != returns True if the
two objects differ in their numerical value.

When you use an array or list as a number, it evaluates to the number of items in that list.

1 my @colors = <red blue green>;

2

3 if @colors == 3 {

4 say "It's true, @colors contains 3 items";

5 }

22

3.2.2 String Comparisons

Just like == converts its arguments to numbers before comparing, eq as an infix operator
compares for string equality, converting its arguments to strings as necessary:

1 if $greeting eq 'hello' {

2 say 'welcome';

3 }

Other operators compare strings lexicographically.

Table 3.2: Operators and Comparisons

Number Comparison String Comparison Stands for
== eq equals
!= ne not equal
!== !eq not equal
< lt less than
<= le less or equal
> gt greater than
>= ge greater or equal

For example, 'a' lt 'b' is true, and likewise 'a' lt 'aa'.

!= is really just a convenience for !==, which in turn is really the ! meta operator added to
the infix == operator. An equivalent explanation applies to ne and !eq.

Three-way Comparison

e three-way comparison operators take two operands, and return Order::Increase if the
le is smaller, Order::Samewhen both are equal, and Order::Decrease if the right operand is
smaller3. For numbers, the comparison operator is <=>, and for strings it’s leg (from lesser,
equal, greater). e infix cmp operator is a type sensitive three-way comparison operator
3 Order::Increase, Order::Same, and Order::Decrease are enumerations (enums); see subtypes

23

Chapter 3 OPERATORS

which compares numbers like <=>, strings like leg, and (for example) pairs first by key, and
then by value if the keys are identical:

1 say 10 <=> 5; # +1

2 say 10 leg 5; # because '1' lt '5'

3 say 'ab' leg 'a'; # +1, lexicographic comparison

A typical use case for three-way comparison is sorting. e .sort method in lists can take
a block or function that takes two values, compares them, and returns a value less than,
equal to or, greater than 0. e sort method then orders the values according to that return
value:

1 say ~<abstract Concrete>.sort;

2 # output: Concrete abstract

3

4 say ~<abstract Concrete>.sort:

5 -> $a, $b { uc($a) leg uc($b) };

6 # output: abstract Concrete

e default comparison is case sensitive; by comparing not the values, but their upper case
variant, this example sorts case insensitively.

3.2.3 Smart Matching

e various comparison operators all coerce their arguments to certain types before com-
paring them. is is useful if you wish to be very specific about what kind of comparison
you want and are unsure of the types of the values you are comparing. Perl 6 provides an-
other operator that allows you to perform comparisons that Do e Right ing with ~~,
the smart match operator.

1 if $pints-drunk ~~ 8 {

2 say "Go home, you've had enough!";

3 }

4

5 if $country ~~ 'Sweden' {

6 say "Meatballs with lingonberries and potato moose, please."

7 }

24

8

9 unless $group-size ~~ 2..4 {

10 say "You must have between 2 and 4 people to book this tour.";

11 }

e smart match operator always decides what kind of comparison to do based upon the
type of the value on the right hand side. In the previous examples, the comparisons are
numeric, string, and range, respectively. While this chapter has demonstrated the numeric
and string comparison operators –== and eq–there is no operator for comparing ranges.
is is part of the power of smart matching: more complex types can define interesting and
useful ways to compare themselves to other things.

Smartmatch works by calling the ACCEPTSmethod on the operand on the right hand
side and passing it the operand on the le hand side as an argument. us $answer
~~ 42 actually desugars to a method call like 42.ACCEPTS($answer). e upshot of
this is that–aer reading the chapter onwriting classes andmethods–you toowill be
able to write things that can smart-match against just by implementing an ACCEPTS

method to do the right thing.

25

4
Subs and Signatures

A subroutine is a piece of code that performs a specific task. It may operate on provided
data (arguments) and may produce results (return values). e signature of a subroutine is
a description of any arguments it takes and any return values it produces.

e first chapter demonstrated simple subroutines. In a sense, the operators described in
the second chapter are also subroutines that Perl 6 parses in interesting ways. However,
they only scratch the surface of what’s possible.

4.1 Declaring A Subroutine

A subroutine declaration consists of several parts. First, the subroutine declarator sub in-
dicates that you are starting a subroutine declaration. Next comes an optional name and an
optional signature. e body of the sub follows as a block of code enclosed in curly braces.
is is what will execute every time the subroutine is called.

For example, in:

27

Chapter 4 SUBS AND SIGNATURES

1 sub panic() {

2 say "Oh no! Something has gone most terribly wrong!";

3 }

... the name of the sub is panic. Its signature is empty. Its body consists of a single say

statement.

By default, subroutines are lexically scoped, just like any variable declared with my. is
means that a subroutine may only be called within the scope in which it was declared. Use
the scope declarator our to make the subroutine available within the current package:

1 {

2 our sub eat() {

3 say "om nom nom";

4 }

5

6 sub drink() {

7 say "glug glug";

8 }

9 }

10

11 eat(); # om nom nom

12 drink(); # fails, can't drink outside of the block

our also makes subroutines visible from the outside of a package or module:

1 module EatAndDrink {

2 our sub eat() {

3 say "om nom nom";

4 }

5

6 sub drink() {

7 say "glug glug";

8 }

9 }

10 EatAndDrink::eat(); # om nom nom

11 EatAndDrink::drink(); # fails, not declared with "our"

You may also export (exporting) a subroutine to make it available to another scope.

28

Perl 6 subroutines are objects. You can pass them around and store them in data structures
just as you can do with any other piece of data. Programming language designers oen call
these first-class subroutines; they are as fundamental to and usable from the language as are
hashes or arrays.

First-class subroutines can help you solve complex problems. For example, to make a little
ASCII art dancing figure, you could build up a hash where the keys are names of the dance
moves, and the values are anonymous subroutines. Assume that users should be able to
enter a list of moves (perhaps on a dance pad or other exotic input device). How can you
maintain a variable list of custom behaviors, allow user input, and restrict that input to a
safe set of behaviors?

TODO this example doesn’t seem like a good one for first-class subs.

1 my $dance = '';

2 my %moves =

3 hands-over-head => sub { $dance ~= '/o\ ' },

4 bird-arms => sub { $dance ~= '|/o\| ' },

5 left => sub { $dance ~= '>o ' },

6 right => sub { $dance ~= 'o< ' },

7 arms-up => sub { $dance ~= '\o/ ' };

8

9 my @awesome-dance = <arms-up bird-arms right hands-over-head>;

10

11 for @awesome-dance -> $move {

12 %moves{$move}.();

13 }

14

15 say $dance;

From the output of this program, you can observe that doing the YMCA dance in ASCII
art looks just as bad as in real life.

29

Chapter 4 SUBS AND SIGNATURES

4.2 Adding Signatures

A subroutine signature performs two tasks. First, it declares the arguments which callers
may or must pass to the subroutine. Second, it declares the variables in the subroutine to
which the arguments are bound. ese variables are called parameters. Perl 6 signatures
go further; they allow you to constrain the values of arguments and to match against and
extract parts of complex data structures.

TODO A third task: specifying a return type.

4.2.1 The Basics

In its simplest form, a signature is a comma separated list of variable names to which to
bind incoming arguments.

1 sub order-beer($type, $pints) {

2 say ($pints == 1 ?? 'A pint' !! "$pints pints") ~ " of $type, please."

3 }

4

5 order-beer('Hobgoblin', 1); # A pint of Hobgoblin, please.

6 order-beer('Zlatý Bažant', 3); # 3 pints of Zlatý Bažant, please.

e use of the term bound instead of assigned is significant. e variables in your signa-
ture are read-only references to the passed arguments. Within the subroutine, you can not
modify them.

If read-only binding is too limiting, you can relax this restriction. Marking a parameter
with is rw means that you can modify the passed argument within the subroutine. Any
modification will modify the original in place. If you attempt to pass a literal or some other
constant value for an rw parameter, the binding will fail at the point of the call, throwing an
exception:

1 sub make-it-more-so($it is rw) {

2 $it ~= substr($it, $it.chars - 1) x 5;

3 }

4

30

5 my $happy = "yay!";

6 make-it-more-so($happy);

7 say $happy; # yay!!!!!!

8 make-it-more-so("uh-oh"); # Fails; can't modify a constant

If, instead, you want your own copy of the argument to work with inside the subrou-
tine–leaving the original untouched–mark the parameter is copy:

1 sub say-it-one-higher($it is copy) {

2 $it++;

3 say $it;

4 }

5

6 my $unanswer = 41;

7 say-it-one-higher($unanswer); # 42

8 say-it-one-higher(41); # 42

e extra verbosity of marking parameters as mutable may seem excessive, but it’s likely
you won’t use these modifiers oen.

4.2.2 Passing Arrays, Hashes and Code

A variable’s sigil indicates its intended use. In a signature, a variable’s sigil also acts as a
constraint on the type of argument that can be passed. For example, the @ sigil checks
that the passed value is Positional – a role which encompassses types like Array and List.
Failing to pass something that matches this constraint will cause the call to fail.

1 sub shout-them(@words) {

2 for @words -> $w {

3 print uc("$w ");

4 }

5 }

6

7 my @last_words = <do not want>;

8 shout-them(@last_words); # DO NOT WANT

9 shout-them('help'); # Fails; a string is not Positional

31

Chapter 4 SUBS AND SIGNATURES

Similarly, the % sigil implies that the caller must pass something that is Associative–that
is, something which allows indexing through <...> or {...}. e & sigil requires that the
caller pass something callable, such as an anonymous subroutine. In that case, youmay also
call the callable parameter without the & sigil:

1 sub do-it-lots(&it, $how-many-times) {

2 for 1..$how-many-times {

3 it();

4 }

5 }

6

7 do-it-lots(sub { say "Eating a stroopwafel" }, 10);

A scalar (the $ sigil) implies no constraints. Anything may bind to it, even if it could also
bind to one of the other sigils.

4.2.3 Interpolating Arrays and Hashes

Sometimes youwant to fill positional arguments froman array. Instead ofwriting eat(@food[0],
@food[1], @food[2], ...) and so on, you can flatten them into the argument list by
prepending a vertical bar: eat(|@food).

Likewise, you can interpolate hashes into named arguments:

1 sub order-shrimps($count, $from) {

2 say "I'd like $count pieces of shrimp from the $from, please";

3 }

4

5 my %user-preferences = (from => 'Northern Sea');

6 order-shrimps(3, |%user-preferences)

32

4.2.4 Optional Parameters

Some parameters may have sensible default values, or may not be required for the sub-
routine to operate; they merely add some extra, optional, configurability. In this case, it is
possible to mark the parameter as optional. ose calling the subroutine can then choose
whether or not to supply an argument.

To make a parameter optional, either assign a default value to the parameter in the signa-
ture:

1 sub order-steak($how = 'medium') {

2 say "I'd like a steak, $how";

3 }

4

5 order-steak();

6 order-steak('well done');

... or append a question mark to the parameter’s name:

1 sub order-burger($type, $side?) {

2 say "I'd like a $type burger" ~

3 (defined($side) ?? " with a side of $side" !! "");

4 }

5

6 order-burger("triple bacon", "deep fried onion rings");

If no argument is passed, an undefined value will be bound to the parameter. As demon-
strated, the defined(...) function can be used to check if there is a value or not.

4.2.5 Named Arguments and Parameters

When a subroutine has many parameters, it can become difficult for the caller to remember
in what order they should pass the arguments. In this case, it is oen easier to pass the
arguments by name. When you do so, the order in which they appear does not matter:

33

Chapter 4 SUBS AND SIGNATURES

1 sub order-beer($type, $pints) {

2 say ($pints == 1 ?? 'A pint' !! "$pints pints") ~ " of $type, please."

3 }

4

5 order-beer(type => 'Hobgoblin', pints => 1);

6 # A pint of Hobgoblin, please.

7

8 order-beer(pints => 3, type => 'Zlatý Bažant');

9 # 3 pints of Zlatý Bažant, please.

Youmay also specify that a parametermay only ever be passed an argument by name (mean-
ing that it is not allowed to pass it by position). To do this, precede the name of the param-
eter with a colon:

1 sub order-shrimps($count, :$from = 'North Sea') {

2 say "I'd like $count pieces of shrimp from the $from, please";

3 }

4

5 order-shrimps(6); # takes 'North Sea'

6 order-shrimps(4, from => 'Atlantic Ocean');

7 order-shrimps(22, 'Mediterranean Sea'); # not allowed, :$from is named only

Unlike positional parameters, named parameters are optional by default. Append a ! to
make a named parameter mandatory.

1 sub design-ice-cream-mixture($base = 'Vanilla', :$name!) {

2 say "Creating a new recipe named $name!"

3 }

4

5 design-ice-cream-mixture(name => 'Plain');

6 design-ice-cream-mixture(base => 'Strawberry chip'); # error, missing $name

34

Renaming Parameters

Since it is possible to pass arguments to parameters by name, the parameter names should
be considered as part of a subroutine’s public API. Choose them carefully! Sometimes it
may be convenient to expose a parameter with one name while binding to a variable of a
different name:

1 sub announce-time(:dinner($supper) = '8pm') {

2 say "We eat dinner at $supper";

3 }

4

5 announce-time(dinner => '9pm'); # We eat dinner at 9pm

Parameters can also have multiple names. If some of your users are British and others are
Americans, you might write:

1 sub paint-rectangle(

2 :$x = 0,

3 :$y = 0,

4 :$width = 100,

5 :$height = 50,

6 :color(:colour($c))) {

7

8 # print a piece of SVG that reprents a rectangle

9 say qq[<rect x="$x" y="$y" width="$width" height="$height"

10 style="fill: $c" />]

11 }

12

13 # both calls work the same

14 paint-rectangle :color<Blue>;

15 paint-rectangle :colour<Blue>;

16

17 # of course you can still fill the other options

18 paint-rectangle :width(30), :height(10), :colour<Blue>;

35

Chapter 4 SUBS AND SIGNATURES

Alternative Named Argument Syntaxes

Named arguments are actually Pairs (of keys and values). ere are multiple ways to write
Pairs. e difference between the approaches is primarily one of clarity, as each alternative
provides a different quoting mechanism. ese three calls all mean the same thing:

1 announce-time(dinner => '9pm');

2 announce-time(:dinner('9pm'));

3 announce-time(:dinner<9pm>);

If you’re passing a boolean value, you may omit the value portion of the pair:

1 toggle-blender(:enabled); # enables the blender

2 toggle-blender(:!enabled); # disables the blender

A named argument of the form :name with no value has an implicit value of Bool::True.
e negated form of this, :!name, has an implicit value of Bool::False.

If you use a variable to create a pair, you can reuse the variable name as the key of the pair.

1 my $dinner = '9pm';

2 announce-dinner :$dinner; # same as dinner => $dinner;

pair forms lists possible Pair forms and their meanings.

You can use any of these forms in any context where you can use a Pair object. For example,
when populating a hash:

1 # TODO: better example

2 my $black = 12;

3 my %color-popularities = :$black, :blue(8),

4 red => 18, :white<0>;

5 # same as

6 # my %color-popularities =

7 # black => 12,

8 # blue => 8,

9 # red => 18,

10 # white => 0;

36

Table 4.1: C<Pair> forms and their meanings

Shorthand Long form Description
:allowed allowed => Bool::True Boolean flag
:!allowed allowed => Bool::False Boolean flag
:bev<tea coffee> bev => ('tea', 'coffee') List
:times[1, 3] times => [1, 3] Array
:opts{ a => 2 } opts => { a => 2 } Hash
:$var var => $var Scalar variable
:@var var => @var Array variable
:%var var => %var Hash variable

Finally, to pass an existing Pair object to a subroutine by position, not name, either put it in
parentheses (like (:$thing)), or use the => operator with a quoted string on the le-hand
side: "thing" => $thing.

Order of Parameters

When both positional and named parameters are present in the same signature, all the
positional parameters need to come before the named parameters.

1 sub mix(@ingredients, :$name) { ... } # OK

2 sub notmix(:$name, @ingredients) { ... } # Error

Required positional parameters need to comebefore optional positional parameters – named
parameters have no such restriction.

TODO: example

37

Chapter 4 SUBS AND SIGNATURES

4.2.6 Slurpy Parameters

Sometimes, you may wish to allow a subroutine to receive any number of arguments, and
collect them all together into an array. In order to do this, add an array parameter to the
signature, placing the slurpy prefix (*) before it.

1 sub shout-them(*@words) {

2 for @words -> $w {

3 print uc("$w ");

4 }

5 }

6

7 # now you can pass items

8 shout-them('go'); # GO

9 shout-them('go', 'home'); # GO HOME

In addition to collecting all of the values, a slurpy parameter will also flatten any arrays that
it collects, so that you end up with a single, flat list. erefore:

1 my @words = ('go', 'home');

2 shout-them(@words);

Will result in the *@words parameter having two string elements, not just a single array
element.

Youmay choose to capture some arguments into positional parameters and leave the rest to
be captured by a slurpy array parameter. In this case, the slurpy should come last. Similarly,
*%hash slurps all the remaining unbound named arguments into a hash.

Slurpy arrays and hashes allow you to pass all positional and named arguments to another
routine:

1 sub debug-wrapper(&code, *@positional, *%named) {

2 warn "Calling '&code.name()' with arguments "

3 ~ "@positional.perl(), %named.perl()\n";
4 code(|@positional, |%named);

5 warn "... back from '&code.name()'\n";
6 }

38

7

8 debug-wrapper(&order-shrimps, 4, from => 'Atlantic Ocean');

4.3 Returning Results

Subroutines can also return values. e ASCII art dancing example from earlier in this
chapter is simpler when each subroutine returns a new string:

1 my %moves =

2 hands-over-head => sub { return '/o\ ' },

3 bird-arms => sub { return '|/o\| ' },

4 left => sub { return '>o ' },

5 right => sub { return 'o< ' },

6 arms-up => sub { return '\o/ ' };

7

8 my @awesome-dance = <arms-up bird-arms right hands-over-head>;

9

10 for @awesome-dance -> $move {

11 print %moves{$move}.();

12 }

13

14 print "\n";

A Perl subroutine can return multiple values:

1 sub menu {

2 if rand < 0.5 {

3 return ('fish', 'white wine')

4 } else {

5 return ('steak', 'red wine');

6 }

7 }

8

9 my ($food, $beverage) = menu();

39

Chapter 4 SUBS AND SIGNATURES

If you exclude the return statement, then the value produced by the last statement run inside
the subroutine will be returned. is means that the previous example may be simplified
to:

1 sub menu {

2 if rand < 0.5 {

3 'fish', 'white wine'

4 } else {

5 'steak', 'red wine';

6 }

7 }

8

9 my ($food, $beverage) = menu();

Be wary of relying on this: when the flow of control within a subroutine is sufficiently com-
plex, adding an explicit return will clarify the code. As a general rule, only the simplest
subroutines benefit from implicit return.

return has the additional effect of immediately exiting the subroutine:

1 sub create-world(*%characteristics) {

2 my $world = World.new(%characteristics);

3 return $world if %characteristics<temporary>;

4

5 save-world($world);

6 }

... and you’d better not misplace your new $world if it’s temporary, as it’s the only one you’re
going to get.

4.4 Working With Types

Many subroutines cannotmeaningfullyworkwith arbitrary parameters, but require that the
parameters support certainmethods or have other properties. In these cases, it makes sense
to restrict the types of parameters, such that attempts to pass incorrect values as arguments
will cause Perl to raise an error at the time of calling the subroutine.

40

4.4.1 Basic Types

e easiest way to restrict the possible values that a subroutine accepts is by writing a type
name before a parameter. For example, a subroutine that performs numeric calculations on
its parameters could require that its arguments are of the type Numeric:

1 sub mean(Numeric $a, Numeric $b) {

2 return ($a + $b) / 2;

3 }

4

5 say mean 2.5, 1.5;

6 say mean 'some', 'strings';

is produces the output:

2

Nominal type check failed for parameter '$a';

expected Numeric but got Str instead

e nominal type is an actual type name, here Numeric, as opposed to a type plus additional
constraints, which are discussed in the next section.

If multiple parameters have type constraints, each argument must fulfill the type constraint
of the parameter to which it binds.

4.4.2 Adding Constraints

Sometimes a type name is insufficient to describe the requirements for an argument. In this
case, you may add an additional constraint to the parameter with a where block:

1 sub circle-radius-from-area(Numeric $area where { $area >= 0 }) {

2 ($area / pi).sqrt

3 }

4

5 say circle-radius-from-area(3); # OK

6 say circle-radius-from-area(-3); # Error

41

Chapter 4 SUBS AND SIGNATURES

Because the calculation is meaningful only for non-negative area values, the parameter in-
cludes a constraint which returns True for non-negative values. If this constraint returns a
false value, the type check will fail when something calls this subroutine.

e block aer the where is optional; Perl performs the check by smart matching the argu-
ment against whatever follows the where. For example, it is possible to accept arguments in
a certain range by writing:

1 sub set-volume(Numeric $volume where 0..11) {

2 say "Turning it up to $volume";

3 }

Or one could constrain arguments to those that exist as keys of a hash:

1 my %in-stock = 'Staropramen' => 8, 'Mori' => 5, 'La Trappe' => 9;

2

3 sub order-beer(Str $name where %in-stock) {

4 say "Here's your $name";

5 %in-stock{$name}--;

6 if %in-stock{$name} == 0 {

7 say "OH NO! That was the last $name, folks! :'(";

8 %in-stock.delete($name);

9 }

10 }

4.5 Captures

Signatures are not just syntax; instead, they are first-class objects that hold a list of Parameter
objects. Likewise, there is a data structure that holds a collection of arguments, named a
Capture. Just as you rarely think of a signature as a whole–instead focusing on individual
parameters–you rarely have to think about captures. However, in some cases it is useful to
do so, and therefore Perl allows you to manipulate captures directly.

Captures have both positional and named parts which act like lists and hashes. e list-like
part contains the positional arguments and the hash-like parts contains the named argu-
ments.

42

4.5.1 Creating And Using A Capture

Whenever you write a sub-routine call, you are implicitly creating a Capture. However, it is
immediately consumed by the call. Sometimes youmaywish tomake a Capture, store it and
then later apply a subroutine–or multiple subroutines– to the set of arguments it contains.
To do this, use the \(...) syntax.

1 my @tasks = \(39, 3, action => { say $^a + $^b }),

2 \(6, 7, action => { say $^a * $^b });

Here, the @tasks array will end up containing two Captures, each of which contains two
positional arguments and one named argument.

It doesn’t matter where in the capture the named arguments appear, because they are passed
by name, not by position.

Like arrays and hashes, a Capture can be flattened into an argument list using |:

1 sub act($left, $right, :$action) {

2 $action($left, $right);

3 }

4

5 for @tasks -> $task-args {

6 act(|$task-args);

7 }

However, in this case it is specifying the full set of arguments for the call, including both
named and positional arguments.

Unlike signatures, captures work like references. Any variablementioned in a capture exists
in the capture as a reference to the variable. us rw parameters still work with captures
involved.

1 my $value = 7;

2 my $to-change = \($value);
3

4 sub double($x is rw) {

5 $x *= 2;

43

Chapter 4 SUBS AND SIGNATURES

6 }

7

8 sub triple($x is rw) {

9 $x *= 3;

10 }

11

12 triple(|$to-change);

13 double(|$to-change);

14

15 say $value; # 42

Perl types with both positional and named parts also show up in various other situations.
For example, regex matches have both positional and named matches–Match objects them-
selves are a type of capture. It’s also possible to conceive of an XML node type that is a type
of capture, with named attributes and positional children. Binding this node to a function
could use the appropriate parameter syntax to work with various children and attributes.

4.5.2 Captures In Signatures

All calls build a capture on the caller side and unpack it according to the signature on the
callee side1. It is also possible to write a signature that binds the capture itself into a variable.
is is especially useful for writing routines that delegate to other routines with the same
arguments.

1 sub visit-czechoslovakia(|$plan) {

2 warn "Sorry, this country has been deprecated.";

3 visit-slovakia(|$plan);

4 visit-czech-republic(|$plan);

5 }

e benefit of using this over a signature like :(*@pos, *%named) is that these both enforce
some context on the arguments, which may be premature. For example, if the caller passes
two arrays, they would flatten into @pos. is means that the two nested arrays could not be
recovered at the point of delegation. A capture preserves the two array arguments, so that
the final callee’s signature may determine how to bind them.
1 An optimizing Perl 6 compiler may, of course, be able to optimize away part or all of this process, depend-

ing on what it knows at compilation time.

44

4.6 Unpacking

Sometimes you need to work with only part of an array or a hash. You can do that with
ordinary slicing access, or you can use signature binding:

1 sub first-is-largest(@a) {

2 my $first = @a.shift;

3 # TODO: either explain junctions, or find a

4 # concise way to write without them

5 return $first >= all(@a);

6 }

7

8 # same thing:

9 sub first-is-largest(@a) {

10 my :($first, *@rest) := \(|@a)
11 return $first >= all(@rest);

12 }

e signature binding approach might seem clumsy, but when you use it in the main sig-
nature of a subroutine, you get tremendous power:

1 sub first-is-largest([$first, *@rest]) {

2 return $first >= all(@rest);

3 }

e brackets in the signature tell the compiler to expect a list-like argument. Instead of
binding to an array parameter, it instead unpacks its arguments into several parameters–in
this case, a scalar for the first element and an array for the rest. is subsignature also acts
as a constraint on the array parameter: the signature binding will fail unless the list in the
capture contains at least one item.

Likewise you can unpack a hash by using %(...) instead of square brackets, but you must
access named parameters instead of positional.

1 sub create-world(%(:$temporary, *%characteristics)) {

2 my $world = World.new(%characteristics);

3 return $world if $temporary;

45

Chapter 4 SUBS AND SIGNATURES

4

5 save-world($world);

6 }

#TODO: comeupwith a good example #maybe steal something fromhttp://jnthn.net/papers/2010-
yapc-eu-signatures.pdf

TODO: generic object unpacking

4.7 Currying

Consider a module that provided the example from the “Optional Parameters” section:

1 sub order-burger($type, $side?) { ... };

If you used order-burger repeatedly, but oen with a side of french fries, you might wish
that the author had also provided a order-burger-and-fries sub. You could easily write it
yourself:

1 sub order-burger-and-fries ($type) {

2 order-burger($type, side => 'french fries');

3 }

If your personal order is always vegetarian, you might instead wish for a order-the-usual

sub. is is less concise to write, due to the optional second parameter:

1 sub order-the-usual ($side?) {

2 if ($side.defined) {

3 order-burger('veggie', $side);

4 }

5 else {

6 order-burger('veggie');

7 }

8 }

46

Currying gives you a shortcut for these exact cases; it creates a new sub from an existing
sub, with parameters already filled in. In Perl 6, curry with the .assuming method:

1 &order-the-usual := &order-burger.assuming('veggie');

2 &order-burger-and-fries := &order-burger.assuming(side => 'french fries');

enew sub is like any other sub, andworkswith all the various parameter-passing schemes
already described.

1 order-the-usual('salsa');

2 order-the-usual(side => 'broccoli');

3

4 order-burger-and-fries('plain');

5 order-burger-and-fries(:type<<double-beef>>);

4.8 Introspection

Subroutines and their signatures are objects like any other. Besides calling them, you can
learn things about them, including the details of their parameters:

1 sub logarithm(Numeric $x, Numeric :$base = exp(1)) {

2 log($x) / log($base);

3 }

4

5 my @params = &logarithm.signature.params;

6 say @params.elems, ' parameters';

7

8 for @params {

9 say "Name: ", .name;

10 say " Type: ", .type;

11 say " named? ", .named ?? 'yes' !! 'no';

12 say " slurpy? ", .slurpy ?? 'yes' !! 'no';

13 say " optional? ", .optional ?? 'yes' !! 'no';

14 }

2 parameters

Name: $x

47

Chapter 4 SUBS AND SIGNATURES

Type: Numeric()

named? no

slurpy? no

optional? no

Name: $base

Type: Numeric()

named? yes

slurpy? no

optional? yes

e & sigil followed by a subroutine name gets the object representing that subroutine. &log-
arithm.signature returns the signature associated with the subroutine, and calling .params
on the signature returns a list of Parameter objects. Each of these objects describes one pa-
rameter in detail.

Table 4.2: Methods in the Parameter class

stolen straight from S06, adapted a bit
method description
name e name of the lexical variable to bind to, if any
type e nominal type
constraints Any further type constraints
readonly True if the parameter has is readonly trait
rw True if the parameter has is rw trait
copy True if the parameter has is copy trait
named True if the parameter is to be passed by name
named names List of names a named parameter can be passed as
slurpy True if the parameter is slurpy
optional True if the parameter is optional
default A closure returning the default value
signature A nested signature to bind the argument against

TODO: talk about &signature.cando once that’s implemented

Signature introspection allows you to build interfaces that can obtain and then pass the
right data to a subroutine. For example, you could build a web form generator that knew
how to get input from a user, validate it, and then call a routine with it based upon the in-

48

formation obtained through introspection. A similar approach might generate a command
line interface along with some basic usage instructions.

Beyond this, traits (traits) allow you to associate extra data with parameters. is metadata
can go far beyond that which subroutines, signatures, and parameters normally provide.

49

5
Classes and Objects

TODO: start with a much simpler bare-bones example!

e following program shows how a dependency handler might look in Perl 6. It show-
cases custom constructors, private and public attributes, methods and various aspects of
signatures. It’s not very much code, and yet the result is interesting and, at times, useful.

1 class Task {

2 has &!callback;

3 has Task @!dependencies;

4 has Bool $.done;

5

6 method new(&callback, Task *@dependencies) {

7 return self.bless(*, :&callback, :@dependencies);

8 }

9

10 method add-dependency(Task $dependency) {

11 push @!dependencies, $dependency;

12 }

13

51

Chapter 5 CLASSES AND OBJECTS

14 method perform() {

15 unless $!done {

16 .perform() for @!dependencies;

17 &!callback();

18 $!done = True;

19 }

20 }

21 }

22

23 my $eat =

24 Task.new({ say 'eating dinner. NOM!' },

25 Task.new({ say 'making dinner' },

26 Task.new({ say 'buying food' },

27 Task.new({ say 'making some money' }),

28 Task.new({ say 'going to the store' })

29),

30 Task.new({ say 'cleaning kitchen' })

31)

32);

33

34 $eat.perform();

5.1 Starting with class

Perl 6, like many other languages, uses the class keyword to introduce a new class. Any-
thing inside of the block that follows is part of the class definition. You may place arbitrary
code there, just as you canwith any other block, but classes commonly contain declarations.
e example code includes declarations relating to state (attributes, introduced through the
has keyword) and behavior (methods, through the method keyword).

Declaring a class creates a type object, which by default gets installed into the package (just
like a variable declared with our scope). is type object is an “empty instance” of the class.
You’ve already seen these. For example, types such as Int and Str refer to the type object of
one of the Perl 6 built-in classes. e example uses the class name Task so that other code
can refer to it later, such as to create class instances by calling the new method.

52

Type objects are undefined, in the sense that they return False if you call the .defined

method on them. You can use this method to find out if a given object is a type object or
not:

1 my $obj = Int;

2 if $obj.defined {

3 say "Type object";

4 } else {

5 say "Ordinary, defined object";

6 }

5.2 I can has state?

e first three lines inside the class block all declare attributes (called fields or instance stor-
age in other languages). ese are storage locations that every instance of a class gets. Just
as a my variable can not be accessed from the outside of its declared scope, attributes are
not accessible outside of the class. is encapsulation is one of the key principles of object
oriented design.

e first declaration specifies instance storage for a callback – a bit of code to invoke in
order to perform the task that an object represents:

1 has &!callback;

e & sigil indicates that this attribute represents something invocable. e ! character is a
twigil, or secondary sigil. A twigil forms part of the name of the variable. In this case, the !
twigil emphasizes that this attribute is private to the class.

e second declaration also uses the private twigil:

1 has Task @!dependencies;

However, this attribute represents an array of items, so it requires the @ sigil. ese items
each specify a task that must be completed before the present one can complete. Further-
more, the type declaration on this attribute indicates that the array may only hold instances
of the Task class (or some subclass of it).

53

Chapter 5 CLASSES AND OBJECTS

e third attribute represents the state of completion of a task:

1 has Bool $.done;

is scalar attribute (with the $ sigil) has a type of Bool. Instead of the ! twigil, this twigil
is .. While Perl 6 does enforce encapsulation on attributes, it also saves you from writing
accessor methods. Replacing the ! with a . both declares the attribute $!done and an
accessor method named done. It’s as if you had written:

1 has Bool $!done;

2 method done() { return $!done }

Note that this is not like declaring a public attribute, as some languages allow; you really get
both a private storage location and a method, without having to write the method by hand.
You are free instead to write your own accessor method, if at some future point you need
to do something more complex than return the value.

Note that using the . twigil has created a method that will provide with readonly access to
the attribute. If instead the users of this object should be able to reset a task’s completion
state (perhaps to perform it again), you can change the attribute declaration:

1 has Bool $.done is rw;

e is rw trait causes the generated accessor method to return something external code
can modify to change the value of the attribute.

5.3 Methods

While attributes give objects state, methods give objects behaviors. Ignore the new method
temporarily; it’s a special type of method. Consider the second method, add-dependency,
which adds a new task to this task’s dependency list.

1 method add-dependency(Task $dependency) {

2 push @!dependencies, $dependency;

3 }

54

In many ways, this looks a lot like a sub declaration. However, there are two important
differences. First, declaring this routine as a method adds it to the list of methods for the
current class. us any instance of the Task class can call this method with the . method
call operator. Second, a method places its invocant into the special variable self.

emethod itself takes the passed parameter–whichmust be an instance of the Task class–and
pushes it onto the invocant’s @!dependencies attribute.

e second method contains the main logic of the dependency handler:

1 method perform() {

2 unless $!done {

3 .perform() for @!dependencies;

4 &!callback();

5 $!done = True;

6 }

7 }

It takes no parameters, working instead with the object’s attributes. First, it checks if the
task has already completed by checking the $!done attribute. If so, there’s nothing to do.

Otherwise, the method performs all of the task’s dependencies, using the for construct
to iterate over all of the items in the @!dependencies attribute. is iteration places each
item–each a Task object–into the topic variable, $. Using the . method call operator with-
out specifying an explicit invocant uses the current topic as the invocant. us the iteration
construct calls the .perform()method on every Task object in the @!dependencies attribute
of the current invocant.

Aer all of the dependencies have completed, it’s time to perform the current Task’s task by
invoking the &!callback attribute directly; this is the purpose of the parentheses. Finally,
the method sets the $!done attribute to True, so that subsequent invocations of perform on
this object (if this Task is a dependency of another Task, for example) will not repeat the
task.

55

Chapter 5 CLASSES AND OBJECTS

5.4 Constructors

Perl 6 is rather more liberal than many languages in the area of constructors. A constructor
is anything that returns an instance of the class. Furthermore, constructors are ordinary
methods. You inherit a default constructor named new from the base class Object, but you
are free to override new, as this example does:

1 method new(&callback, Task *@dependencies) {

2 return self.bless(*, :&callback, :@dependencies);

3 }

e biggest difference between constructors in Perl 6 and constructors in languages such
as C# and Java is that rather than setting up state on a somehow already magically created
object, Perl 6 constructors actually create the object themselves. is easiest way to do this
is by calling the bless method, also inherited from Object. e bless method expects a
positional parameter–the so-called “candidate”–and a set of named parameters providing
the initial values for each attribute.

e example’s constructor turns positional arguments into named arguments, so that the
class can provide a nice constructor for its users. e first parameter is the callback (the
thing to do to execute the task). e rest of the parameters are dependent Task instances.
e constructor captures these into the @dependencies slurpy array and passes them as
named parameters to bless (note that :&callback uses the name of the variable–minus
the sigil–as the name of the parameter).

5.5 Consuming our class

Aer creating a class, you can create instances of the class. Declaring a custom constructor
provides a simple way of declaring tasks along with their dependencies. To create a single
task with no dependencies, write:

1 my $eat = Task.new({ say 'eating dinner. NOM!' });

An earlier section explained that declaring the class Task installed a type object had been
installed in the namespace. is type object is a kind of “empty instance” of the class,

56

specifically an instance without any state. You can call methods on that instance, as long as
they do not try to access any state; new is an example, as it creates a new object rather than
modifying or accessing an existing object.

Unfortunately, dinner never magically happens. It has dependent tasks:

1 my $eat =

2 Task.new({ say 'eating dinner. NOM!' },

3 Task.new({ say 'making dinner' },

4 Task.new({ say 'buying food' },

5 Task.new({ say 'making some money' }),

6 Task.new({ say 'going to the store' })

7),

8 Task.new({ say 'cleaning kitchen' })

9)

10);

Notice how the custom constructor and sensible use of whitespace allows a layout which
makes task dependencies clear.

Finally, the perform method call recursively calls the perform method on the various other
dependencies in order, giving the output:

1 making some money

2 going to the store

3 buying food

4 cleaning kitchen

5 making dinner

6 eating dinner. NOM!

5.6 Inheritance

Object Oriented Programming provides the concept of inheritance as one of the mecha-
nisms to allow for code reuse. Perl 6 supports the ability for one class to inherit from one
or more classes. When a class inherits from another class that informs the method dis-
patcher to follow the inheritance chain to look for a method to dispatch. is happens both

57

Chapter 5 CLASSES AND OBJECTS

for standard methods defined via the method keyword and for methods generated through
other means such as attribute accessors.

1 class Employee {

2 has $.salary;

3

4 method pay() {

5 say "Here is \$$.salary";
6 }

7

8 }

9

10 class Programmer is Employee {

11 has @.known_languages is rw;

12 has $.favorite_editor;

13

14 method code_to_solve($problem) {

15 say "Solving $problem using $.favorite_editor in "

16 ~ $.known_languages[0] ~ '.';

17 }

18 }

Now any object of type Programmer can make use of the methods and accessors defined in
the Employee class as though they were from the Programmer class.

1 my $programmer = Employee.new(

2 salary => 100_000,

3 known_languages => <Perl5, Perl6, Erlang, C++>,

4 favorite_edtor => 'vim'

5);

$programmer.code to solve(’turing problem’); $programmer.pay();

58

5.6.1 Overriding Inherited Methods

Of course, classes can override methods and attributes defined on ancestoral classes by
defining their own. e example below demonstrates the Baker class overriding the Cook’s
cook method.

1 class Cook is Employee {

2 has @.utensils is rw;

3 has @.cookbooks is rw;

4

5 method cook($food) {

6 say "Cooking $food";

7 }

8

9 method clean_utensils {

10 say "Cleaning $_" for @.utensils;

11 }

12 }

13

14 class Baker is Cook {

15 method cook($confection) {

16 say "Baking a tasty $confection";

17 }

18 }

19

20 my $cook = Cook.new(

21 utensils => (<spoon ladel knife pan>),

22 cookbooks => ('The Joy of Cooking'),

23 salary => 40000);

24

25 $cook.cook('pizza'); # Cooking pizza

26

27 my $baker = Cook.new(

28 utensils => ('self cleaning oven'),

29 cookbooks => ("The Baker's Apprentice"),

30 salary => 50000);

31

32 $baker.cook('brioche'); # Baking a tasty brioche

59

Chapter 5 CLASSES AND OBJECTS

Because the dispatcher will see the cook method on Baker before it moves up to the parent
class the Baker’s cook method will be called.

5.6.2 Multiple Inheritance

As mentioned before, a class can inherit from multiple classes. When a class inherits from
multiple classes the dispatcher knows to look at both classes when looking up a method to
search for. As a side note, Perl 6 uses the C3 algorithm to linearize the multiple inheritance
hierarchies, which is a significant improvement over Perl 5’s approach to handling multiple
inheritance.

1 class GeekCook is Programmer is Cook {

2 method new(*%params) {

3 push(%params<cookbooks>, "Cooking for Geeks");

4 return self.bless(%params);

5 }

6 }

7

8 my $geek = GeekCook.new(

9 books => ('Learning Perl 6'),

10 utensils => ('blingless pot', 'knife', 'calibrated oven'),

11 favorite_editor => 'MacVim',

12 known_languages => <Perl6>

13);

14

15 $geek.cook('pizza');

16 $geek.code_to_solve('P =? NP');

Now all the methods made available by both the Programmer class and the Cook class are
available from the GeekCook class.

While multiple inheritance is a useful concept to know and on occasion use, it is important
to understand that there are more useful OOP concepts. When reaching for multiple in-
heritance it is good practice to consider whether the design wouldn’t be better realized by
using roles. For more information on roles check out the Roles chapter.

60

1 my $geek = GeekCook.new(

2 books => ('Learning Perl 6'),

3 utensils => ('blingless pot', 'knife', 'calibrated oven'),

4 favorite_editor => 'MacVim',

5 languages => <Perl6>

6);

7

8 $geek.cook('pizza');

9 $geek.code_to_solve('P =? NP');

5.7 Introspection

Introspection is the process of gathering information about some objects in your program,
not by reading the source code, but by querying the object (or a controlling object) for some
properties, like its type.

Given an object $p, and the class definitions from the previous sections, we can ask it a few
questions:

1 if $o ~~ Employee { say "It's an employee" };

2 if $o ~~ GeekCook { say "It's a geeky cook" };

3 say $o.WHAT;

4 say $o.perl;

5 say $o.^methods(:local).join(', ');

e output can look like this:

It's an employee

Programmer()

Programmer.new(known_languages => ["Perl", "Python", "Pascal"], favorite_editor => "gvim", salary => "too small")

code_to_solve, known_languages, favorite_editor

e first two tests each smart-match against a class name. If the object is of that class, or of
an inheriting class, it returns true. So the object in question is of class Employee or one that
inherits from it, but not GeekCook.

61

Chapter 5 CLASSES AND OBJECTS

e .WHATmethod returns the type object associated with the object $o, which tells the exact
type of $o: in this case Programmer.

$o.perl returns a string that can be executed as Perl code, and reproduces the original object
$o. While this does not work perfectly in all cases1, it is very useful for debugging simple
objects.

Finally $o.^methods(:local) produces a list ofmethods that can be called on $o. e :local
named argument limits the returned methods to those defined in the Employee class, and
excludes the inherited methods.

e syntax of callingmethodwith .^ instead of a single dotmeans that it is actually amethod
call on themeta class, which is a class managing the properties of the Employee class - or any
other class you are interested in. is meta class enables other ways of introspection too:

1 say $o.^attributes.join(', ');

2 say $o.^parents.join(', ');

Introspection is very useful for debugging, and for learning the language and new libraries.
When a function or method returns an object you don’t know about, finding its type with
.WHAT, a construction recipe for it with .perl and so on you’ll get a good idea what this
return value is. With .^methods you can learn what you can do with it.

But there are other applications too: a routine that serializes objects to a bunch of bytes
needs to know the attributes of that object, which it can find out via introspection.

5.8 Exercises

1. e method add-dependency in Task permits the creation of cycles in the dependency
graph. at is, if you follow dependencies, you can eventually return to the original Task.
Show how to create a graph with cycles and explain why the perform method of a Task

whose dependencies contain a cycle would never terminate successfully.

1 for example closures cannot easily be reproduced this way; if you don’t knowwhat a closure is don’t worry.
Also current implementations have problems with dumping cyclic data structures this way, but they are
expected to be handlded correctly by .perl at some point.

62

Answer: You can create two tasks, and then “short-circuit” them with add-dependency:

1 my $a = Task.new({ say 'A' });

2 my $b = Task.new({ say 'B' }, $a);

3 $a.add-dependency($b);

e perform method will never terminate because the first thing the method does is to call
all the perform methods of its dependencies. Because $a and $b are dependencies of each
other, none of them would ever get around to calling their callbacks. e program will
exhaust memory before it ever prints 'A' or 'B'.

2. Is there a way to detect the presence of a cycle during the course of a perform call? Is
there a way to prevent cycles from ever forming through add-dependency?

Answer: To detect the presence of a cycle during a perform call, keep track of which Tasks
have started; prevent a Task from starting twice before finishing:

1 augment class Task {

2 has Bool $!started = False;

3

4 method perform() {

5 if $!started++ && !$!done {

6 die "Cycle detected, aborting";

7 }

8

9 unless $!done {

10 .perform() for @!dependencies;

11 &!callback();

12 $!done = True;

13 }

14 }

15 }

Another approach is to stop cycles from formingduring add-dependencyby checkingwhether
there’s already a dependency running in the other direction. (is is the only situation in
which a cycle can occur.) is requires the addition of a helper method depends-on, which
checks whether a task depends on another one, either directly or transitively. Note the use
of » and [||] to write succinctly what would otherwise have involved looping over all the
dependencies of the Task:

63

Chapter 5 CLASSES AND OBJECTS

1 augment class Task {

2 method depends-on(Task $some-task) {

3 $some-task === any(@!dependencies)

4 [||] @!dependencies».depends-on($some-task)

5 }

6

7 method add-dependency(Task $dependency) {

8 if $dependency.depends-on(self) {

9 warn 'Cannot add that task, since it would introduce a cycle.';

10 return;

11 }

12 push @!dependencies, $dependency;

13 }

14 }

3. How could Task objects execute their dependencies in parallel? (ink especially about
how to avoid collisions in “diamond dependencies”, where a Task has two different depen-
dencies which in turn have the same dependency.)

Answer: Enabling parallelism is easy; change the line .perform() for @!dependencies;

into @!dependencies».perform(). However, there may be race conditions in the case of
diamond dependencies, wherein Tasks A starts B and C in parallel, and both start a copy
of D, making D run twice. e solution to this is the same as with the cycle-detection in
Question 2: introducing an attribute $!started. Note that it’s impolite to die if a Task has
started but not yet finished, because this time it might be due to parallelism rather than
cycles:

1 augment class Task {

2 has Bool $!started = False;

3

4 method perform() {

5 unless $!started++ {

6 @!dependencies».perform();

7 &!callback();

8 $!done = True;

9 }

10 }

11 }

64

6
Multis

Perl usually decideswhich function to call based on the name of the function or the contents
of a function reference. is is simple to understand. Perl can also examine the contents
of the arguments provided to decide which of several variants of a function–variants each
with the same name–to call. In this case, the amount and types of the function’s arguments
help to distinguish between multiple variants of a function. is is multidispatch, and the
functions to which Perl can dispatch in this case are multis.

Javascript Object Notation (JSON) is a simple data exchange format oen used for com-
municating with web services. It supports arrays, hashes, numbers, strings, boolean values,
and null, the undefined value. Here you can find an implementation that turns Perl 6 data
structures to JSON.

is snippet demonstrates how multis make the code simpler and more obvious.

e other way round, converting a JSON string to a Perl 6 data structure, is covered in the
chapter Grammars.

65

Chapter 6 MULTIS

e code presented here is runnable. It is part of the libary JSON::Tiny, which is
available from http://github.com/moritz/json/. It also includes tests and docu-
mentation.

1 multi to-json(Real $d) { ~$d }

2 multi to-json(Bool $d) { $d ?? 'true' !! 'false'; }

3 multi to-json(Str $d) {

4 '"'

5 ~ $d.trans(['"', '\\', "\b", "\f", "\n", "\r", "\t"]
6 => ['\"', '\\\\', '\b', '\f', '\n', '\r', '\t'])
7 ~ '"'

8 }

9

10 multi to-json(Array $d) {

11 return '['

12 ~ $d.values.map({ to-json($_) }).join(', ')

13 ~ ']';

14 }

15

16 multi to-json(Hash $d) {

17 return '{ '

18 ~ $d.pairs.map({ to-json(.key)

19 ~ ' : '

20 ~ to-json(.value) }).join(', ')

21 ~ ' }';

22 }

23

24 multi to-json($d where {!defined $d}) { 'null' }

25

26 multi to-json($d) {

27 die "Can't serialize an object of type " ~ $d.WHAT.perl

28 }

is code defines a single multi sub named to-json, which takes one argument and turns
that into a string. to-json has many candidates; these subs all have the name to-json but
differ in their signatures. Every candidate resembles:

66

http://github.com/moritz/json/

1 multi to-json(Bool $data) { ... }

2 multi to-json(Real $data) { ... }

Which one is actually called depends on the type of the data passed to the subroutine. A
call such as to-json(Bool::True) invokes the first candidate. Passing a numeric value of
type Real instead invokes the second.

e candidate for handling Real is very simple; because JSON’s and Perl 6’s number formats
coincide, the JSON converter can rely on Perl’s conversion of these numbers to strings. e
Bool candidate returns a literal string 'true' or 'false'.

e Str candidate doesmore work: it wraps its parameter in quotes and escapes literal char-
acters that the JSON spec does not allow in strings–a tab character becomes \t, a newline
\n, and so on.

e to-json(Array $d) candidate converts all elements of the array to JSON with recursive
calls to to-json, joins them with commas, and surrounds them with square brackets. e
recursive calls demonstrate a powerful truth of multidispatch: these calls do not necessarily
recurse to the Array candidate, but dispatch to the appropriate candidate based on the types
of their arguments.

e candidate that processes hashes turns them into the form { "key1" : "value1", "key2"

: ["second", "value"] }. It does this again by recursing into to-json.

6.1 Constraints

Candidates can specify more complex signatures:

1 multi to-json($d where {!defined $d}) { 'null' }

is candidate adds two new twists. It contains no type definition, in which case the type
of the parameter defaults to Any, the root of the normal branch of the type hierarchy. More
interestingly, the where {!defined $d} clause is a constraint, which defines a so-called subset
type. is candidate will match only some values of the type Any–those where the value is
undefined.

67

Chapter 6 MULTIS

Whenever the compiler performs a type check on the parameter $d, it first checks the nom-
inal type (here, Any). A nominal type is an actual class or role, as opposed to additional
constraints in the form of code blocks.

If that check succeeds, it calls the code block. e entire type check can only succeed if the
code block returns a true value.

e curly braces for the constraint can contain arbitrary code. You can abuse this to count
how oen a type check occurs:

1 my $counter = 0;

2

3 multi a(Int $x) { }

4 multi a($x) { }

5 multi a($x where { $counter++; True }) { }

6

7 a(3);

8 say $counter; # says 0

9 a('str');

10 say $counter; # says 2

is code defines three multis, one of which increases a counter whenever its where clause
executes. Any Perl 6 compiler is free to optimize away type checks it knows will succeed. In
the current Rakudo implementation, the second line with say will print a higher number
than the first.

In the first call of a(3), the nominal types alone already determine the best candidatematch,
so the where block never executes and the first $counter output is always 0.

e output aer the second call is at least 1. e compiler has to execute the where-block
at least once to check if the third candidate is the best match, but the specification does
not require theminimal possible number of runs. is is illustrated in the second $counter

output. e specific implementation used to run this test actually executes the where-block
twice. Keep in mind that the number of times the subtype checks blocks execute is specific
to any particular implementation of Perl 6.

68

Avoid writing code like this in anything other than example code. Relying on the
side effects of type checks produces unreliable code.

6.2 Narrowness

One candidate remains from the JSON example:

1 multi to-json($d) {

2 die "Can't serialize an object of type " ~ $d.WHAT.perl

3 }

With no explicit type or constraint on the parameter $d, its type defaults to Any–and thus it
matches any passed object. e body of this function complains that it doesn’t know what
to do with the argument. is works for the example, because JSON’s specification covers
only a few basic structures.

e declaration and intent may seem simple at first, but look closer. is final candidate
matches not only objects for which there is no candidate defined, but it can match for all
objects, including Int, Bool, Num. A call like to-json(2) has two matching candidates–Int
and Any.

If you run that code, you’ll discover that the Int candidate gets called. Because Int is a type
that conforms to Any, it is a narrowermatch for an integer. Given two types A and B, where A
conforms to B (A ~~ B, in Perl 6 code), an object which conforms to A does somore narrowly
than to B. In the case of multi dispatch, the narrowest match always wins.

A successfully evaluated constraint makes a match narrower than a similar signature with-
out a constraint. In the case of:

1 multi to-json($d) { ... }

2 multi to-json($d where {!defined $d}) { ... }

... an undefined value dispatches to the second candidate.

69

Chapter 6 MULTIS

However, a matching constraint always contributes less to narrowness than a more specific
match in the nominal type.

1 TODO: Better example

2

3 multi a(Any $x where { $x > 0 }) { 'Constraint' }

4 multi a(Int $x) { 'Nominal type' }

5

6 say a(3), ' wins'; # says Nominal type wins

is restriction allows a clever compiler optimization: it can sort all candidates by narrow-
ness once to find the candidate with the bestmatching signature by examining nominal type
constraints. ese are far cheaper to check than constraint checks. Constraint checking oc-
curs next, and only if the constraint check of the narrowest candidate fails, other candidates
are tried that are lass narrow by nominal type.

e Int type object both conforms to Int, but it is also an undefined value. If you pass it to
the multi a, the second candidate, which is specific to Int wins, because nominal types are
checked first.

6.3 Multiple arguments

Candidate signatures may contain any number of positional and named arguments, both
explicit and slurpy. However only positional parameters contribute to the narrowness of a
match:

1 class Rock { }

2 class Paper { }

3 class Scissors { }

4

5 multi wins(Scissors $, Paper $) { +1 }

6 multi wins(Paper $, Rock $) { +1 }

7 multi wins(Rock $, Scissors $) { +1 }

8 multi wins(::T $, T $) { 0 }

9 multi wins($, $) { -1 }

10

70

11 sub play($a, $b) {

12 given wins($a, $b) {

13 when +1 { say 'Player One wins' }

14 when 0 { say 'Draw' }

15 when -1 { say 'Player Two wins' }

16 }

17 }

18

19 play(Scissors, Paper);

20 play(Paper, Paper);

21 play(Rock, Paper);

Rock

Paper

Scissors

Rock Paper Scissors

multi wins($, $) { -1 }

-1

-1

-1

Figure 6.1: Who wins the Rock, Paper, Scissors game?

is example demonstrates how multiple dispatch can encapsulate all of the rules of a pop-
ular game. Both players independently select a symbol (rock, paper, or scissors). Scissors
win against paper, paper wraps rock, and scissors can’t cut rock, but go blunt trying. If both
players select the same item, it’s a draw.

e code creates a class for each possible symbol. For each combination of chosen symbols
for which Player One wins there’s a candidate of the form:

1 multi wins(Scissors $, Paper $) { +1 }

Because the bodies of the subs here do not use the parameters, there’s no reason to force
the programmer to name them; they’re anonymous parameters. A single $ in a signature
identifies an anonymous scalar variable.

e fourth candidate, multi wins(::T $, T $) { 0 } uses ::T, which is a type capture
(similar to generics or templates in other programming languages). It binds the nominal

71

Chapter 6 MULTIS

type of the first argument to T, which can then act as a type constraint. If you pass a Rock

as the first argument, T acts as an alias for Rock inside the rest of the signature and the body
of the routine. e signature (::T $, T $) will bind only two objects of the same type, or
where the second is of a subtype of the first.

In this game, that fourth candidate matches only for two objects of the same type. e
routine returns 0 to indicate a draw.

e final candidate is a fallback for the cases not covered yet–every case in which Player
Two wins.

If the (Scissors, Paper) candidate matches the supplied argument list, it is two steps nar-
rower than the (Any, Any) fallback, because both Scissors and Paper are direct subtypes
of Any, so both contribute one step.

If the (::T, T) candidate matches, the type capture in the first parameter does not con-
tribute any narrowness–it is not a constraint, aer all. However T is a constraint for the
second parameter which accounts for as many steps of narrowness as the number of inher-
itance steps between T and Any. Passing two Rocks means that ::T, T is one step narrower
than Any, Any. A possible candidate:

1 multi wins(Rock $, Rock $) {

2 say "Two rocks? What is this, 20,000 years ago?"

3 }

... would win against (::T, T).

6.4 Bindability checks

Traits can apply implicit constraints:

1 multi swap($a is rw, $b is rw) {

2 ($a, $b) = ($b, $a);

3 }

72

is routine exchanges the contents of its two arguments. It must bind the two arguments
as rw–both readable and writable. Calling the swap routine with an immutable value (for
example a number literal) will fail.

e built-in function substr can not only extract parts of strings, but also modify them:

1 # substr(String, Start, Length)

2 say substr('Perl 5', 0, 4); # prints Perl

3

4 my $p = 'Perl 5';

5 # substr(String, Start, Length, Substitution)

6 substr($p, 6, 1, '6');

7 # now $p contains the string Perl 6

You already know that the three-argument version and the four-argument version have
different candidates: the latter binds its first argument as rw:

1 multi substr($str, $start = 0, $length = *) { ... }

2 multi substr($str is rw, $start, $length, $substitution) { ... }

is is also an example of candidates with different arity (number of expected arguments).
is is seldom really necessary, because it is oen a better alternative to make parameters
optional. Cases where an arbitrary number of arguments are allowed are handled with
slurpy parameters instead:

1 sub mean(*@values) {

2 ([+] @values) / @values;

3 }

6.5 Nested Signatures in Multi-dispatch

An earlier chapter showed how to use nested signatures to look deeper into data structures
and extract parts of them. In the context of multiple dispatch, nested signatures take on a
second task: they act as constraints to distinguish between the candidates. is means that
it is possible to dispatch based upon the shape of a data structure. is brings Perl 6 a lot of
the expressive power provided by pattern matching in various functional languages.

73

Chapter 6 MULTIS

Some algorithms have very tidy and natural expressions with this feature, especially those
which recurse to a simple base case. Consider quicksort. e base case is that of the empty
list, which trivially sorts to the empty list. A Perl 6 version might be:

1 multi quicksort([]) { () }

e [] declares an empty nested signature for the first positional parameter. Additionally,
it requires that the first positional parameter be an indexable item–anything that would
match the @ sigil. e signature will only match if the multi has a single parameter which is
an empty list.

e other case is a list which contains at least one value–the pivot–and possibly other values
to partition according to the pivot. e rest of quicksort is a couple of recursive calls to sort
both partitions:

1 multi quicksort([$pivot, *@rest]) {

2 my @before = @rest.grep({ $_ <= $pivot });

3 my @after = @rest.grep({ $_ > $pivot });

4

5 return quicksort(@before), $pivot, quicksort(@after);

6 }

6.6 Protos

You have two options to write multi subs: either you start every candidate with multi sub

... or multi ..., or you declare once and for all that the compiler shall view every sub of
a given name as a multi candidate. Do the latter by installing a proto routine:

1 proto to-json($) { ... } # literal ... here

2

3 # automatically a multi

4 sub to-json(Bool $d) { $d ?? 'true' !! 'false' }

74

Nearly all Perl 6 built-in functions and operators export a proto definition, which prevents
accidental overriding of built-ins1.

To hide all candidates of a multi and replace them by another sub, declare it as only
sub YourSub. At the time of writing, no compiler supports this.

6.7 Toying with the candidate list

Each multi dispatch builds a list of candidates, all of which satisfy the nominal type con-
straints. For a normal sub or method call, the dispatcher invokes the first candidate which
passes any additional constraint checks.

A routine can choose to delegate its work to other candidates in that list. e callsame

primitive calls the next candidate, passing along the arguments received. e callwith

primitive calls the next candidate with different (and provided) arguments. Aer the called
routine has done its work, the callee can continue its work.

If there’s no further work to do, the routine can decide to hand control completely to the
next candidate by calling nextsame or nextwith. e former reuses the argument list and
the latter allows the use of a different argument list. is delegation is common in object
destructors, where each subclass may perform some cleanup for its own particular data.
Aer it finishes its work, it can delegate to its parent class meethod by calling nextsame.

1 One of the very rare exceptions is the smart match operator infix:<~~> which is not easily overloadable.
Instead it redispatches to overloadable multi methods.

75

7
Roles

A role is a standalone, named, and reusable unit of behavior. You can compose a role into a
class at compile time or add it to an individual object at runtime.

at’s an abstract definition best explained by an example. is program demonstrates a
simple and pluggable IRC bot framework which understands a few simple commands.

1 # XXX This is VERY preliminary code and needs filling out. But it

2 # does provide opportunities to discuss runtime mixins, compile time

3 # composition, requirements and a few other bits.

4

5 my regex nick { \w+ }

6 my regex join-line { ... <nick> ... }

7 my regex message-line { $<sender>=[...] $<message>=[...] }

8

9 class IRCBot {

10 has $.bot-nick;

11 method run($server) {

12 ...

13 }

77

Chapter 7 ROLES

14 }

15

16 role KarmaTracking {

17 has %!karma-scores;

18

19 multi method on-message($sender, $msg where /^karma <ws> <nick>/) {

20 if %!karma-scores{$<nick>} -> $karma {

21 return $<nick> ~ " has karma $karma";

22 }

23 else {

24 return $<nick> ~ " has neutral karma";

25 }

26 }

27

28 multi method on-message($sender, $msg where /<nick> '++'/) {

29 %!karma-scores{$<nick>}++;

30 }

31

32 multi method on-message($sender, $msg where /<nick> '--'/) {

33 %!karma-scores{$<nick>}--;

34 }

35 }

36

37 role Oping {

38 has @!whoz-op;

39

40 multi method on-join($nick) {

41 if $nick eq any(@!whoz-op) {

42 return "/mode +o $nick";

43 }

44 }

45

46 # I'm tempted to add another candidate here which checks any(@!whoz-op)

47 multi method on-message($sender, $msg where /^trust <ws> <nick>/) {

48 if $sender eq any(@!whoz-op) {

49 push @!whoz-op, $<nick>;

50 return "I now trust " ~ $<nick>;

51 }

52 else {

53 return "But $sender, I don't trust you";

54 }

78

55 }

56 }

57

58 role AnswerToAll {

59 method process($raw-in) {

60 if $raw-in ~~ /<on-join>/ {

61 self.*on-join($<nick>);

62 }

63 elsif $raw-in ~~ /<on-message>/ {

64 self.*on-message($<sender>, $<message>)

65 }

66 }

67 }

68

69 role AnswerIfTalkedTo {

70 method bot-nick() { ... }

71

72 method process($raw-in) {

73 if $raw-in ~~ /<on-join>/ {

74 self.*on-join($<nick>);

75 }

76 elsif $raw-in ~~ /<on-message>/ -> $msg {

77 my $my-nick = self.bot-nick();

78 if $msg<msg> ~~ /^ $my-nick ':'/ {

79 self.*on-message($msg<sender>, $msg<message>)

80 }

81 }

82 }

83 }

84

85 my %pluggables =

86 karma => KarmaTracking,

87 op => Oping;

88

89 role Plugins {

90 multi method on-message($self is rw: $sender, $msg where /^youdo <ws> (\w+)/) {

91 if %pluggables{$0} -> $plug-in {

92 $self does $plug-in;

93 return "Loaded $0";

94 }

95 }

79

Chapter 7 ROLES

96 }

97

98 class AdminBot is IRCBot does KarmaTracking does Oping {}

99 class KarmaKeeper is IRCBot does KarmaTracking does AnswerToAll {}

100 class NothingBot is IRCBot does AnswerIfTalkedTo does Plugins {}

You don’t have to understand everything in this example yet. It’s only important right now
to notice that the classes KarmaKeeper and NothingBot share some behavior by inheriting
from IRCBot and differentiate their behaviors by performing different roles.

7.1 What is a role?

A role is another type of package. Like classes, a role can containmethods (including named
regexes) and attributes. However, a role cannot stand on its own; you cannot instantiate a
role. To use a role, you must incorporate it into an object, class, or, as we’ll see in later
chapters, a grammar.

In other object systems, classes perform two tasks. ey represent entities in the system,
providing models from which to create instances. ey also provide a mechanism for code
re-use. ese two tasks contradict each other to some degree. For optimal re-use, classes
should be small, but in order to represent a complex entity with many behaviors, classes
tend to grow large. Large projects written in such systems oen have complex interactions
andworkarounds for classes which want to reuse code but do not want to take on additional
unnecessary capabilities.

Perl 6 classes retain the responsibility for modeling and managing instances. Roles handle
the task of code reuse. A role contains the methods and attributes required to provide a
named, reusable unit of behavior. Building a class out of roles uses a safe mechanism called
flattening composition. You may also apply a role to an individual object. Both of these
design techniques appear in the example code.

Some roles–parametric roles–allow the use of specific customizations to change how they
provide the features they provide. is helps Perl 6 provide generic programming, along
the lines of generics in C# and Java, or templates in C++.

80

7.2 Compile Time Composition

Look at the KarmaKeeper class declaration. e body is empty; the class defines no attributes
ormethods of its own. e class inherits from IRCBot, using the is traitmodifier–something
familiar from earlier chapters–but it also uses the does trait modifier to compose two roles
into the class.

e process of role composition is simple. Perl takes the attributes and methods defined in
each role and copies them into the class. Aer composition, the class appears as if those
attributes and methods had been declared in the class’s declaration itself. is is part of the
flattening property: aer composing a role into the class, the roles in and of themselves are
only important when querying the class to determine if it performs the role. Querying the
methods of the KarmaKeeper class through introspection will report that the class has both
a process method and an on-message multi method.

If this were all that roles provided, they’d have few advantages over inheritance or mixins.
Roles get much more interesting in the case of a conflict. Consider the class definition:

1 class MyBot is IRCBot does AnswerToAll does AnswerIfTalkedTo {}

Both the AnswerToAll and AnswerIfTalkedTo roles provide a method named process. Even
though they share a name, themethods perform semantically different–and conflicting–behaviors.
e role composer will produce a compile-time error about this conflict, asking the pro-
grammer to provide a resolution.

Multiple inheritance and mixin mechanisms rarely provide this degree of conflict resolu-
tion. In those situations, the order of inheritance or mixin decides which method wins. All
possible roles are equal in role composition.

What can you do if there is a conflict? In this case, it makes little sense to compose both
of the roles into a class. e programmer here has made a mistake and should choose to
compose only one role to provide the desired behavior. An alternative way to resolve a
conflict is to write a method with the same name in the class body itself:

1 class MyBot is IRCBot does AnswerToAll does AnswerIfTalkedTo {

2 method process($raw-in) {

3 # Do something sensible here...

81

Chapter 7 ROLES

4 }

5 }

If the role composer detects a method with the same name in the class body, it will then
disregard all of the (possibly conflicting) ones from the roles. Put simply, methods in the
class always supersede methods which a role may provide.

What happens when a class performs a role but overrides all of its methods? at’s
okay too: declaring that a class performs a role does not require you to compose
in any behavior from the role. e role composer will verify that all of the role’s
requirements are satisfied once and only once, and from then on Perl’s type system
will consider all instances of the class as corresponding to the type implied by the
role.

7.2.1 Multi-methods and composition

Sometimes it’s okay to have multiple methods of the same name, provided they have dif-
ferent signatures such that the multidispatch mechanism can distinguish between them.
Multi methods with the same name from different roles will not conflict with each other.
Instead, the candidates from all of the roles will combine during role composition.

If the class provides a method of the same name that is also multi, then all methods defined
in the role and the class will combine into a set of multi candidates. Otherwise, if the class
has a method of the same name that is not declared as a multi, then the method in the class
alone–as usual–will take precedence. is is the mechanism by which the AdminBot class
can perform the appropriate on-message method provided by both the KarmaTracking and
the Oping roles.

When a class composes multiple roles, an alternate declaration syntax may be more read-
able:

1 class KarmaKeeper is IRCBot {

2 does AnswerToAll;

3 does KarmaTracking;

4 does Oping;

5 }

82

7.2.2 Calling all candidates

e processmethods of the roles AnswerToAll and AnswerIfTalkedTo use amodified syntax
for calling methods:

1 self.*on-message($msg<sender>, $msg<message>)

e .*method calling syntax changes the semantics of the dispatch. Just as the * quantifier
in regexes means “zero or more”, the .* dispatch operator will call zero or more matching
methods. If no on-message multi candidates match, the call will not produce an error. If
more than one on-messagemulti candidatematches, Perl will call all of them, whether found
by multiple dispatch, searching the inheritance hierarchy, or both.

ere are two other variants. .+ greedily calls all methods but dies unless it can call at least
one method. .?, tries to call one method, but returns a Failure rather then throwing an
exception. ese dispatch formsmay seem rare, but they’re very useful for event driven pro-
gramming. One-or-failure is very useful when dealing with per-object role application.

7.2.3 Expressing requirements

e role AnswerIfTalkedTo declares a stub for the method bot-nick, but never provides an
implementation.

1 method bot-nick() { ... }

In the context of a role, this means that any class which composes this role must somehow
provide a method named bot-nick. e class itself may provide it, another role must pro-
vide it, or a parent class must provide it. IRCBot does the latter; it IRCBot defines an attribute
$!bot-nick along with an accessor method.

If you do not make explicit the methods on which your role depends, the role composer
will not verify their existence at compilation time. Any missing methods will cause run-
time errors (barring the use of something like AUTOMETH). As compile-time verification is an
important feature of roles, it’s best to mark your dependencies.

83

Chapter 7 ROLES

7.3 Runtime Application of Roles

Class declarations frozen at compilation time are oen sufficient, but sometimes it’s useful
to add new behaviors to individual objects. Perl 6 allows you to do so by applying roles to
individual objects at runtime.

e example in this chapter uses this to give bots new abilities during their lifetimes. e
Plugins role is at the heart of this. e signature of the method on-message captures the in-
vocant into a variable $selfmarked rw, which indicates that the invocant may be modified.
Inside the method, that happens:

1 if %pluggables{$0} -> $plug-in {

2 $self does $plug-in;

3 return "Loaded $0";

4 }

Roles in Perl 6 are first-class entities, just like classes. You can pass roles around just like any
other object. e %pluggables hash maps names of plug-ins to Role objects. e lookup
inside on-message stores a Role in $plug-in. e does operator adds this role to $self–not
the class of $self, but the instance itself. From this point on, $self now has all of the
methods from the role, in addition to all of the ones that it had before. is does affect any
other instances of the same class; only this one instance has changed.

7.3.1 Differences from compile time composition

Runtime application differs from compile time composition in that methods in the applied
role will automatically override any of the same name within the class of the object. It’s as
if you had written an anonymous subclass of the current class of the object that composed
the role into it. is means that .* will find both those methods that mixed into the object
from one or more roles along with any that already existed in the class.

If you wish to apply multiple roles at a time, list them all with does. is case behaves the
same way as compile-time composition, in that the role composer will compose them all
into the imaginary anonymous subclass. Any conflicts will occur at this point.

84

is gives a degree of safety, but it happens at runtime and is thus not as safe as compile time
composition. For safety, perform your compositions at compile time. Instead of applying
multiple roles to an instance, compose them into a new role at compile time and apply that
role to the instance.

7.3.2 The but operator

Runtime role application with doesmodifies an object in place: $x does SomeRolemodifies
the object stored in $x. Sometimes this modification is not what you want. In that case, use
the but operator, which clones the object, performs the role composition with the clone,
and returns the clone. e original object stays the same.

TODO: example

7.4 Parametric Roles

7.5 Roles and Types

85

8
Subtypes

1 enum Suit <spades hearts diamonds clubs>;

2 enum Rank (2, 3, 4, 5, 6, 7, 8, 9, 10,

3 'jack', 'queen', 'king', 'ace');

4

5 class Card {

6 has Suit $.suit;

7 has Rank $.rank;

8

9 method Str {

10 $.rank.name ~ ' of ' ~ $.suit.name;

11 }

12 }

13

14 subset PokerHand of List where { .elems == 5 && all(|$_) ~~ Card }

15

16 sub n-of-a-kind($n, @cards) {

17 for @cards>>.rank.uniq -> $rank {

18 return True if $n == grep $rank, @cards>>.rank;

19 }

87

Chapter 8 SUBTYPES

20 return False;

21 }

22

23 subset Quad of PokerHand where { n-of-a-kind(4, $_) }

24 subset ThreeOfAKind of PokerHand where { n-of-a-kind(3, $_) }

25 subset OnePair of PokerHand where { n-of-a-kind(2, $_) }

26

27 subset FullHouse of PokerHand where OnePair & ThreeOfAKind;

28

29 subset Flush of PokerHand where -> @cards { [==] @cards>>.suit }

30

31 subset Straight of PokerHand where sub (@cards) {

32 my @sorted-cards = @cards.sort({ .rank });

33 my ($head, @tail) = @sorted-cards;

34 for @tail -> $card {

35 return False if $card.rank != $head.rank + 1;

36 $head = $card;

37 }

38 return True;

39 }

40

41 subset StraightFlush of Flush where Straight;

42

43 subset TwoPair of PokerHand where sub (@cards) {

44 my $pairs = 0;

45 for @cards>>.rank.uniq -> $rank {

46 ++$pairs if 2 == grep $rank, @cards>>.rank;

47 }

48 return $pairs == 2;

49 }

50

51 sub classify(PokerHand $_) {

52 when StraightFlush { 'straight flush', 8 }

53 when Quad { 'four of a kind', 7 }

54 when FullHouse { 'full house', 6 }

55 when Flush { 'flush', 5 }

56 when Straight { 'straight', 4 }

57 when ThreeOfAKind { 'three of a kind', 3 }

58 when TwoPair { 'two pair', 2 }

59 when OnePair { 'one pair', 1 }

60 when * { 'high cards', 0 }

88

61 }

62

63 my @deck = map -> $suit, $rank { Card.new(:$suit, :$rank) },

64 (Suit.pick(*) X Rank.pick(*));

65

66 @deck .= pick(*);

67

68 my @hand1;

69 @hand1.push(@deck.shift()) for ^5;

70 my @hand2;

71 @hand2.push(@deck.shift()) for ^5;

72

73 say 'Hand 1: ', map { "\n $_" }, @hand1>>.Str;

74 say 'Hand 2: ', map { "\n $_" }, @hand2>>.Str;

75

76 my ($hand1-description, $hand1-value) = classify(@hand1);

77 my ($hand2-description, $hand2-value) = classify(@hand2);

78

79 say sprintf q[The first hand is a '%s' and the second one a '%s', so %s.],

80 $hand1-description, $hand2-description,

81 $hand1-value > $hand2-value

82 ?? 'the first hand wins'

83 !! $hand2-value > $hand1-value

84 ?? 'the second hand wins'

85 !! "the hands are of equal value"; # XXX: this is wrong

89

9
Pattern matching

Regular expressions are a computer science concept where simple patterns describe the
format of text. Pattern matching is the process of applying these patterns to actual text to
look for matches. Most modern regular expression facilities are more powerful than tradi-
tional regular expressions due to the influence of languages such as Perl, but the short-hand
term regex has stuck and continues to mean “regular expression-like pattern matching”.
In Perl 6, though the specific syntax used to describe the patterns is different from PCRE1

and POSIX2, we continue to call them regex.

A common writing error is to duplicate a word by accident. It is hard to catch such errors
by rereading your own text, but Perl can do it for you using regex:

1 my $s = 'the quick brown fox jumped over the the lazy dog';

2

3 if $s ~~ m/ « (\w+) \W+ $0 » / {

4 say "Found '$0' twice in a row";

5 }

1 Perl Compatible Regular Expressions
2 Portable Operating System Interface for Unix. See IEEE standard 1003.1-2001

91

Chapter 9 PATTERN MATCHING

esimplest case of a regex is a constant string. Matching a string against that regex searches
for that string:

1 if 'properly' ~~ m/ perl / {

2 say "'properly' contains 'perl'";

3 }

e construct m/ ... / builds a regex. A regex on the right hand side of the ~~ smart match
operator applies against the string on the le hand side. By default, whitespace inside the
regex is irrelevant for the matching, so writing the regex as m/ perl /, m/perl/ or m/ p

e rl/ all produce the exact same semantics–although the first way is probably the most
readable.

Only word characters, digits, and the underscore cause an exact substring search. All other
characters may have a special meaning. If you want to search for a comma, an asterisk, or
another non-word character, you must quote or escape it3:

1 my $str = "I'm *very* happy";

2

3 # quoting

4 if $str ~~ m/ '*very*' / { say '\o/' }

5

6 # escaping

7 if $str ~~ m/ * very * / { say '\o/' }

Searching for literal strings gets boring pretty quickly. Regex support special (also called
metasyntactic) characters. e dot (.) matches a single, arbitrary character:

1 my @words = <spell superlative openly stuff>;

2

3 for @words -> $w {

4 if $w ~~ m/ pe.l / {

5 say "$w contains $/";

6 } else {

7 say "no match for $w";

8 }

9 }

3 To search for a literal string–without using the pattern matching features of regex–consider using index

or rindex instead.

92

is prints:

spell contains pell

superlative contains perl

openly contains penl

no match for stuff

edotmatched an l, r, and n, but it will alsomatch a space in the sentence the spectroscope
lacks resolution–regexes ignore word boundaries by default. e special variable $/ stores
(among other things) only the part of the string that matched the regular expression. $/

holds these so-called match objects.

Suppose you want to solve a crossword puzzle. You have a word list and want to find words
containing pe, then an arbitrary letter, and then an l (but not a space, as your puzzle has
extra markers for those). e appropriate regex for that is m/pe \w l/. e \w control
sequence stands for a “Word” character–a letter, digit, or an underscore. is chapter’s
example uses \w to build the definition of a “word”.

Several other common control sequences each match a single character; you can find a list
of those in regex backslash.

Table 9.1: Backslash sequences and their meaning

Symbol Description Examples
\w word character l, ö, 3,
\d digit 0, 1
\s whitespace (tab), (blank), (newline)
\t tabulator (tab)
\n newline (newline)
\h horizontal whitespace (space), (tab)
\v vertical whitespace (newline), (vertical tab)

Invert the sense of each of these backslash sequences by uppercasing its letter: \Wmatches a
character that’snot aword character and \Nmatches a single character that’s not a newline.

93

Chapter 9 PATTERN MATCHING

esematches extend beyond theASCII range–\dmatches Latin, Arabic-Indic, Devanagari
and other digits, \s matches non-breaking whitespace, and so on. ese character classes
follow the Unicode definition of what is a letter, a number, and so on.

Todefine your own customcharacter classes, listing the appropriate characters inside nested
angle and square brackets <[...]>:

1 if $str ~~ / <[aeiou]> / {

2 say "'$str' contains a vowel";

3 }

4

5 # negation with a -

6 if $str ~~ / <-[aeiou]> / {

7 say "'$str' contains something that's not a vowel";

8 }

Rather than listing each character in the character class individually, you may specify a
range of characters by placing the range operator .. between the beginning and ending
characters:

1 # match a, b, c, d, ..., y, z

2 if $str ~~ / <[a..z]> / {

3 say "'$str' contains a lower case Latin letter";

4 }

You may add characters to or subtract characters from classes with the + and - operators:

1 if $str ~~ / <[a..z]+[0..9]> / {

2 say "'$str' contains a letter or number";

3 }

4

5 if $str ~~ / <[a..z]-[aeiou]> / {

6 say "'$str' contains a consonant";

7 }

e negated character class is a special application of this idea.

A quantifier specifies how oen something has to occur. A question mark ? makes the
preceding unit (be it a letter, a character class, or something more complicated) optional,

94

meaning it can either be present either zero or one times. m/ho u? se/ matches either
house or hose. You can also write the regex as m/hou?se/ without any spaces, and the ? will
still quantify only the u.

e asterisk * stands for zero ormore occurrences, so m/z\w*o/ canmatch zo, zoo, zero and
so on. e plus + stands for one or more occurrences, \w+ usually matches what you might
consider a word (though only matches the first three characters from isn't because ' isn’t
a word character).

e most general quantifier is **. When followed by a number, it matches that many times.
When followed by a range, it can match any number of times that the range allows:

1 # match a date of the form 2009-10-24:

2 m/ \d**4 '-' \d\d '-' \d\d /

3

4 # match at least three 'a's in a row:

5 m/ a ** 3..* /

If the right hand side is neither a number nor a range, it becomes a delimiter, which means
that m/ \w ** ', '/ matches a list of characters each separated by a comma and whites-
pace.

If a quantifier has several ways to match, Perl will choose the longest one. is is greedy
matching. Appending a question mark to a quantifier makes it non-greedy4

For example, you can parse HTML very badly5with the code:

1 my $html = '<p>A paragraph</p> <p>And a second one</p>';

2

3 if $html ~~ m/ '<p>' .* '</p>' / {

4 say 'Matches the complete string!';

5 }

6

7 if $html ~~ m/ '<p>' .*? '</p>' / {

8 say 'Matches only <p>A paragraph</p>!';

9 }

4 e non-greedy general quantifier is $thing **? $count, so the question mark goes directly aer the
second asterisk.

5 Using a proper stateful parser is always more accurate.

95

Chapter 9 PATTERN MATCHING

To apply a modifier to more than just one character or character class, group items with
square brackets:

1 my $ingredients = 'milk, flour, eggs and sugar';

2 # prints "milk, flour, eggs"

3 $ingredients ~~ m/ [\w+] ** [\,\s*] / && say $/;

Separate alternations–parts of a regex of which any can match– with vertical bars. One
vertical bar between multiple parts of a regex means that the alternatives are tried in par-
allel and the longest matching alternative wins. Two bars make the regex engine try each
alternative in order and the first matching alternative wins.

1 $string ~~ m/ \d**4 '-' \d\d '-' \d\d | 'today' | 'yesterday' /

9.1 Anchors

So far every regex could match anywhere within a string. Oen it is useful to limit the
match to the start or end of a string or line or to word boundaries. A single caret ^ anchors
the regex to the start of the string and a dollar sign $ to the end. m/ ^a / matches strings
beginning with an a, and m/ ^ a $ / matches strings that consist only of an a.

Table 9.2: Regex anchors

Anchor Meaning
^ start of string
$ end of string
^^ start of a line
$$ end of a line
<< le word boundary
« le word boundary
>> right word boundary
» right word boundary

96

9.2 Captures

Regex can be very useful for extracting information too. Surrounding part of a regex with
round brackets (aka parentheses) (...) makes Perl capture the string it matches. e string
matched by the first group of parentheses is available in $/[0], the second in $/[1], etc. $/
acts as an array containing the captures from each parentheses group:

1 my $str = 'Germany was reunited on 1990-10-03, peacefully';

2

3 if $str ~~ m/ (\d**4) \- (\d\d) \- (\d\d) / {

4 say 'Year: ', $/[0];

5 say 'Month: ', $/[1];

6 say 'Day: ', $/[2];

7 # usage as an array:

8 say $/.join('-'); # prints 1990-10-03

9 }

If you quantify a capture, the corresponding entry in thematch object is a list of othermatch
objects:

1 my $ingredients = 'eggs, milk, sugar and flour';

2

3 if $ingredients ~~ m/(\w+) ** [\,\s*] \s* 'and' \s* (\w+)/ {

4 say 'list: ', $/[0].join(' | ');

5 say 'end: ', $/[1];

6 }

is prints:

list: eggs | milk | sugar

end: flour

e first capture, (\w+), was quantified, so $/[0] contains a list of words. e code calls
.join to turn it into a string. Regardless of how many times the first capture matches (and
how many elements are in $/[0]), the second capture is still available in $/[1].

97

Chapter 9 PATTERN MATCHING

As a shortcut, $/[0] is also available under the name $0, $/[1] as $1, and so on. ese
aliases are also available inside the regex. is allows you to write a regex that detects that
common error of duplicated words, just like the example at the beginning of this chapter:

1 my $s = 'the quick brown fox jumped over the the lazy dog';

2

3 if $s ~~ m/ « (\w+) \W+ $0 » / {

4 say "Found '$0' twice in a row";

5 }

e regex first anchors to a le word boundary with « so that it doesn’t match partial dupli-
cation of words. Next, the regex captures a word ((\w+)), followed by at least one non-word
character \W+. is implies a right word boundary, so there is no need to use an explicit
boundary. en it matches the previous capture followed by a right word boundary.

Without the first word boundary anchor, the regex would for example match strand and
beach or lathe the table leg. Without the last word boundary anchor it would also match the
theory.

9.3 Named regexes

You can declare regexes just like subroutines–and even name them. Suppose you found the
example at the beginning of this chapter useful andwant tomake it available easily. Suppose
also you want to extend it to handle contractions such as doesn't or isn't:

1 my regex word { \w+ [\' \w+]? }

2 my regex dup { « <word=&word> \W+ $<word> » }

3

4 if $s ~~ m/ <dup=&dup> / {

5 say "Found '{$<dup><word>}' twice in a row";

6 }

is code introduces a regex named word, which matches at least one word character, op-
tionally followed by a single quote. Another regex called dup (short for duplicate) contains
a word boundary anchor.

98

Within a regex, the syntax <&word> locates the regex word within the current lexical scope
and matches against the regex. e <name=®ex> syntax creates a capture named name,
which records what ®ex matched in the match object.

In this example, dup calls the word regex, then matches at least one non-word character, and
then matches the same string as previously matched by the regex word. It ends with another
word boundary. e syntax for this backreference is a dollar sign followed by the name of
the capture in angle brackets6.

Within the if block, $<dup> is short for $/{'dup'}. It accesses the match object that the
regex dup produced. dup also has a subrule called word. e match object produced from
that call is accessible as $<dup><word>.

Named regexes make it easy to organize complex regexes by building them up from smaller
pieces.

9.4 Modifiers

e previous example to match a list of words was:

1 m/(\w+) ** [\,\s*] \s* 'and' \s* (\w+)/

is works, but the repeated “I don’t care about whitespace” units are clumsy. e desire
to allow whitespace anywhere in a string is common. Perl 6 regexes allow this through the
use of the :sigspace modifier (shortened to :s):

1 my $ingredients = 'eggs, milk, sugar and flour';

2

3 if $ingredients ~~ m/:s (\w+) ** \,'and' (\w+)/ {

4 say 'list: ', $/[0].join(' | ');

5 say 'end: ', $/[1];

6 }

6 In grammars–see (grammars)–<word> looks up a regex named word in the current grammar and parent
grammars, and creates a capture of the same name.

99

Chapter 9 PATTERN MATCHING

is modifier allows optional whitespace in the text wherever there one or more whites-
pace characters appears in the pattern. It’s even a bit cleverer than that: between two word
characters whitespace is mandatory. e regex does not match the string eggs, milk, sug-

arandflour.

e :ignorecase or :i modifier makes the regex insensitive to upper and lower case, so m/

:i perl / matches perl, PerL, and PERL (though who names a programming language in
all uppercase letters?)

9.5 Backtracking control

In the course of matching a regex against a string, the regex enginemay reach a point where
an alternation has matched a particular branch or a quantifier has greedily matched all it
can, but the final portion of the regex fails to match. In this case, the regex engine backs
up and attempts to match another alternative or matches one fewer character of the quan-
tified portion to see if the overall regex succeeds. is process of failing and trying again is
backtracking.

When matching m/\w+ 'en'/ against the string oxen, the \w+ group first matches the whole
string because of the greediness of +, but then the en literal at the end can’t match anything.
\w+ gives up one character to match oxe. en still can’t match, so the \w+ group again gives
up one character and now matches ox. e en literal can now match the last two characters
of the string, and the overall match succeeds.

While backtracking is oen useful and convenient, it can also be slow and confusing. A
colon : switches off backtracking for the previous quantifier or alternation. m/ \w+: 'en'/

can never match any string, because the \w+ always eats up all word characters and never
releases them.

e :ratchet modifier disables backtracking for a whole regex, which is oen desirable
in a small regex called oen from other regexes. e duplicate word search regex had to
anchor the regex to word boundaries, because \w+ would allow matching only part of a
word. Disabling backtracking makes \w+ always match a full word:

1 my regex word { :ratchet \w+ [\' \w+]? }

2 my regex dup { <word=&word> \W+ $<word> }

100

3

4 # no match, doesn't match the 'and'

5 # in 'strand' without backtracking

6 'strand and beach' ~~ m/<&dup>/

e effect of :ratchet applies only to the regex in which it appears. e outer regex will
still backtrack, so it can retry the regex word at a different staring position.

e regex { :ratchet ... } pattern is common that it has its own shortcut: token { ...

}. An idiomatic duplicate word searcher might be:

1 my token word { \w+ [\' \w+]? }

2 my regex dup { <word> \W+ $<word> }

A token with the :sigspace modifier is a rule:

1 my rule wordlist { <word> ** \, 'and' <word> }

9.6 Substitutions

Regexes are also good for data manipulation. e subst method matches a regex against a
string. With subst matches, it substitutes the matched portion of the string its the second
operand:

1 my $spacey = 'with many superfluous spaces';

2

3 say $spacey.subst(rx/ \s+ /, ' ', :g);

4 # output: with many superfluous spaces

By default, subst performs a single match and stops. e :g modifier tells the substitution
to work globally to replace every possible match.

Note the use of rx/ ... / rather than m/ ... / to construct the regex. e former
constructs a regex object. e latter constructs the regex object and immediately matches
it against the topic variable $. Using m/ ... / in the call to subst creates a match object
and passes it as the first argument, rather than the regex itself.

101

Chapter 9 PATTERN MATCHING

9.7 Other Regex Features

Sometimes you want to call other regexes, but don’t want them to capture the matched
text. When parsing a programming language you might discard whitespace characters and
comments. You can achieve that by calling the regex as <.otherrule>.

If you use the :sigspace modifier, every continuous piece of whitespace calls the built-in
rule <.ws>. is use of a rule rather than a character class allows you to define your own
version of whitespace characters (see grammars).

Sometimes you just want to peek ahead to check if the next characters fulfill some properties
without actually consuming them. is is common in substitutions. In normal English text,
you always place a whitespace aer a comma. If somebody forgets to add that whitespace,
a regex can clean up aer the lazy writer:

1 my $str = 'milk,flour,sugar and eggs';

2 say $str.subst(/',' <?before \w>/, ', ', :g);

3 # output: milk, flour, sugar and eggs

e word character aer the comma is not part of the match, because it is in a look-ahead
introduced by <?before ... >. e leading question mark indicates an zero-width asser-
tion: a rule that never consumes characters from the matched string. You can turn any call
to a subrule into an zero width assertion. e built-in token <alpha>matches an alphabetic
character, so you can rewrite this example as:

1 say $str.subst(/',' <?alpha>/, ', ', :g);

An leading exclamation mark negates the meaning, such that the lookahead must not find
the regex fragment. Another variant is:

1 say $str.subst(/',' <!space>/, ', ', :g);

You can also look behind to assert that the string onlymatches aer another regex fragment.
is assertion is <?after>. You canwrite the equivalent ofmany built-in anchors with look-
ahead and look-behind assertions, though they won’t be as efficient.

102

Table 9.3: Emulation of anchors with look-around assertions

Anchor Meaning Equivalent Assertion
^ start of string <!after .>

^^ start of line <?after ^ | \n >

$ end of string <!before .>

>> right word boundary <?after \w> <!before \w>

9.8 Match objects

1 sub line-and-column(Match $m) {

2 my $line = ($m.orig.substr(0, $m.from).split("\n")).elems;
3 # RAKUDO workaround for RT #70003, $m.orig.rindex(...) directly fails

4 my $column = $m.from - ('' ~ $m.orig).rindex("\n", $m.from);

5 $line, $column;

6 }

7

8 my $s = "the quick\nbrown fox jumped\nover the the lazy dog";

9

10 my token word { \w+ [\' \w+]? }

11 my regex dup { <word> \W+ $<word> }

12

13 if $s ~~ m/ <dup> / {

14 my ($line, $column) = line-and-column($/);

15 say "Found '{$<dup><word>}' twice in a row";

16 say "at line $line, column $column";

17 }

18

19 # output:

20 # Found 'the' twice in a row

21 # at line 3, column 6

Every regex match returns an object of type Match. In boolean context, a match object
returns True for successful matches and False for failed ones. Most properties are only
interesting aer successful matches.

103

Chapter 9 PATTERN MATCHING

e orig method returns the string that was matched against. e from and to methods
return the positions of the start and end points of the match.

In the previous example, the line-and-column function determines the line number in
which thematch occurred by extracting the string up to thematch position ($m.orig.substr(0,
$m.from)), splitting it by newlines, and counting the elements. It calculates the column by
searching backwards from the match position and calculating the difference to the match
position.

e index method searches a string for another substring and returns the position
of the search string. e rindex method does the same, but searches backwards
from the end of the string, so it finds the position of the final occurrence of the
substring.

Using a match object as an array yields access to the positional captures. Using it as a hash
reveals the named captures. In the previous example, $<dup> is a shortcut for $/<dup> or
$/{ 'dup' }. ese captures are again Match objects, so match objects are really trees of
matches.

e caps method returns all captures, named and positional, in the order in which their
matched text appears in the source string. e return value is a list of Pair objects, the keys
of which are the names or numbers of the capture and the values the corresponding Match

objects.

1 if 'abc' ~~ m/(.) <alpha> (.) / {

2 for $/.caps {

3 say .key, ' => ', .value;

4

5 }

6 }

7

8 # Output:

9 # 0 => a

10 # alpha => b

11 # 1 => c

104

In this case the captures occur in the same order as they are in the regex, but quantifiers can
change that. Even so, $/.caps follows the ordering of the string, not of the regex. Any parts
of the string which match but not as part of captures will not appear in the values that caps
returns.

To access the non-captured parts too, use $/.chunks instead. It returns both the captured
and the non-captured part of the matched string, in the same format as caps, but with a
tilde ~ as key. If there are no overlapping captures (as occurs from look-around assertions),
the concatenation of all the pair values that chunks returns is the same as the matched part
of the string.

105

10
Grammars

Grammars organize regexes, just like classes organize methods. e following example
demonstrates how to parse JSON, a data exchange format already introduced (see mul-
tis).

1 # file lib/JSON/Tiny/Grammar.pm

2

3 grammar JSON::Tiny::Grammar {

4 rule TOP { ^[<object> | <array>]$ }

5 rule object { '{' ~ '}' <pairlist> }

6 rule pairlist { [<pair> ** [\,]]? }

7 rule pair { <string> ':' <value> }

8 rule array { '[' ~ ']' [<value> ** [\,]]? }

9

10 proto token value { <...> };

11

12 token value:sym<number> {

13 '-'?

14 [0 | <[1..9]> <[0..9]>*]

15 [\. <[0..9]>+]?

107

Chapter 10 GRAMMARS

16 [<[eE]> [\+|\-]? <[0..9]>+]?

17 }

18

19 token value:sym<true> { <sym> };

20 token value:sym<false> { <sym> };

21 token value:sym<null> { <sym> };

22 token value:sym<object> { <object> };

23 token value:sym<array> { <array> };

24 token value:sym<string> { <string> }

25

26 token string {

27 \" ~ \" [<str> | \\ <str_escape>]*

28 }

29

30 token str {

31 [

32 <!before \t>
33 <!before \n>
34 <!before \\>
35 <!before \">
36 .

37]+

38 # <-["\\\t\n]>+
39 }

40

41 token str_escape {

42 <["\\/bfnrt]> | u <xdigit>**4

43 }

44

45 }

46

47

48 # test it:

49 my $tester = '{

50 "country": "Austria",

51 "cities": ["Wien", "Salzburg", "Innsbruck"],

52 "population": 8353243

53 }';

54

55 if JSON::Tiny::Grammar.parse($tester) {

56 say "It's valid JSON";

108

57 } else {

58 # TODO: error reporting

59 say "Not quite...";

60 }

A grammar contains various named regex. Regex names may be constructed the same as
subroutine names or method names. While regex names are completely up to the grammar
writer, a rule named TOPwill, by default, be invoked when the .parse()method is executed
on a grammar. e above call to JSON::Tiny::Grammar.parse($tester) starts by attempting
to match the regex named TOP to the string $tester.

In this example, the TOP rule anchors the match to the start and end of the string, so that the
whole string has to be in valid JSON format for the match to succeed. Aer matching the
anchor at the start of the string, the regex attempts to match either an <array> or an <ob-

ject>. Enclosing a regex name in angle brackets causes the regex engine to attempt tomatch
a regex by that name within the same grammar. Subsequent matches are straightforward
and reflect the structure in which JSON components can appear.

Regexes can be recursive. An array contains value. In turn a value can be an array. is
will not cause an infinite loop as long as at least one regex per recursive call consumes at
least one character. If a set of regexes were to call each other recursively without progressing
in the string, the recursion could go on infinitely and never proceed to other parts of the
grammar.

e example grammar given above introduces the goal matching syntax which can be pre-
sented abstractly as: A ~B C. In JSON::Tiny::Grammar, A is '{', B is '}' and C is <pairlist>.
e atomon the le of the tilde (A) ismatched normally, but the atom to the right of the tilde
(B) is set as the goal, and then the final atom (C) is matched. Once the final atom matches,
the regex engine attempts to match the goal (B). is has the effect of switching the match
order of the final two atoms (B and C), but since Perl knows that the regex engine should
be looking for the goal, a better error message can be given when the goal does not match.
is is very helpful for bracketing constructs as it puts the brackets near one another.

Another novelty is the declaration of a proto token:

1 proto token value { <...> };

2

3 token value:sym<number> {

109

Chapter 10 GRAMMARS

4 '-'?

5 [0 | <[1..9]> <[0..9]>*]

6 [\. <[0..9]>+]?

7 [<[eE]> [\+|\-]? <[0..9]>+]?

8 }

9

10 token value:sym<true> { <sym> };

11 token value:sym<false> { <sym> };

e proto token syntax indicates that value will be a set of alternatives instead of a single
regex. Each alternative has a name of the form token value:sym<thing>, which can be read
as alternative of value with parameter sym set to thing. e body of such an alternative is
a normal regex, where the call <sym> matches the value of the parameter, in this example
thing.

When calling the rule <value>, the grammar engine attempts to match the alternatives in
parallel and the longest match wins. is is exactly like normal alternation, but as we’ll see
in the next section, has the advantage of being extensible.

10.1 Grammar Inheritance

e similarity of grammars to classes goes deeper than storing regexes in a namespace as
a class might store methods. You can inherit from and extend grammars, mix roles into
them, and take advantage of polymorphism. In fact, a grammar is a class which by default
inherits from Grammar instead of Any.

Suppose you want to enhance the JSON grammar to allow single-line C++ or JavaScript
comments, which begin with // and continue until the end of the line. e simplest en-
hancement is to allow such a comment in any place where whitespace is valid.

However, JSON::Tiny::Grammar only implicitlymatcheswhitespace through the use of rules,
which are like tokens but with the :sigspace modifier enabled. Implicit whitespace is
matched with the inherited regex <ws>, so the simplest approach to enable single- line com-
ments is to override that named regex:

110

1 grammar JSON::Tiny::Grammar::WithComments

2 is JSON::Tiny::Grammar {

3

4 token ws {

5 \s* ['//' \N* \n]?

6 }

7 }

8

9 my $tester = '{

10 "country": "Austria",

11 "cities": ["Wien", "Salzburg", "Innsbruck"],

12 "population": 8353243 // data from 2009-01

13 }';

14

15 if JSON::Tiny::Grammar::WithComments.parse($tester) {

16 say "It's valid (modified) JSON";

17 }

e first two lines introduce a grammar that inherits from JSON::Tiny::Grammar. As sub-
classes inherit methods from superclasses, so any grammar rule not present in the derived
grammar will come from its base grammar.

In this minimal JSON grammar, whitespace is nevermandatory, so ws canmatch nothing at
all. Aer optional spaces, two slashes '//' introduce a comment, aer which must follow
an arbitrary number of non- newline characters, and then a newline. In prose, the comment
starts with '//' and extends to the rest of the line.

Inherited grammars may also add variants to proto tokens:

1 grammar JSON::ExtendedNumeric is JSON::Tiny::Grammar {

2 token value:sym<nan> { <sym> }

3 token value:sym<inf> { <[+-]>? <sym> }

4 }

In this grammar, a call to <value>matches either one of the newly added alternatives, or any
of the old alternatives from the parent grammar JSON::Tiny::Grammar. Such extensibility
is difficult to achieve with ordinary, | delimited alternatives.

111

Chapter 10 GRAMMARS

10.2 Extracting data

e parse method of a grammar returns a Match object through which you can access all
the relevant information of the match. Named regex that match within the grammar may
be accessed via the Match object similar to a hash where the keys are the regex names and
the values are the Match object that represents that part of the overall regexmatch. Similarly,
portions of thematch that are capturedwith parentheses are available as positional elements
of the Match object (as if it were an array).

Once you have the Match object, what can you do with it? You could recursively traverse
this object and create data structures based onwhat you find or execute code. An alternative
solution exists: action methods.

1 class JSON::Tiny::Actions {

2 method TOP($/) { make $/.values.[0].ast }

3 method object($/) { make $<pairlist>.ast.hash }

4 method pairlist($/) { make $<pair>».ast }

5 method pair($/) { make $<string>.ast => $<value>.ast }

6 method array($/) { make [$<value>».ast] }

7 method string($/) { make join '', $/.caps>>.value>>.ast }

8

9 # TODO: make that

10 # make +$/

11 # once prefix:<+> is sufficiently polymorphic

12 method value:sym<number>($/) { make eval $/ }

13 method value:sym<string>($/) { make $<string>.ast }

14 method value:sym<true> ($/) { make Bool::True }

15 method value:sym<false> ($/) { make Bool::False }

16 method value:sym<null> ($/) { make Any }

17 method value:sym<object>($/) { make $<object>.ast }

18 method value:sym<array> ($/) { make $<array>.ast }

19

20 method str($/) { make ~$/ }

21

22 method str_escape($/) {

23 if $<xdigit> {

24 make chr(:16($<xdigit>.join));

25 } else {

26 my %h = '\\' => "\\",

112

27 'n' => "\n",
28 't' => "\t",
29 'f' => "\f",
30 'r' => "\r";
31 make %h{$/};

32 }

33 }

34 }

35

36 my $actions = JSON::Tiny::Actions.new();

37 JSON::Tiny::Grammar.parse($str, :$actions);

is example passes an actions object to the grammar’s parsemethod. Whenever the gram-
mar engine finishes parsing a regex, it calls a method on the actions object with the same
name as the current regex. If no such method exists, the grammar engine moves along. If
a method does exist, the grammar engine passes the current match object as a positional
argument.

Each match object has a slot called ast (short for abstract syntax tree) for a payload object.
is slot can hold a custom data structure that you create from the action methods. Call-
ing make $thing in an action method sets the ast attribute of the current match object to
$thing.

An abstract syntax tree, or AST, is a data structure which represents the parsed ver-
sion of the text. Your grammar describes the structure of the AST: its root element
is the TOP node, which contain children of the allowed types and so on.

In the case of the JSON parser, the payload is the data structure that the JSON string repre-
sents. For each matching rule, the grammar engine calls an action method to populate the
ast slot of the match object. is process transforms the match tree into a different tree–in
this case, the actual JSON tree.

Although the rules and action methods live in different namespaces (and in a real-world
project probably even in separate files), here they are adjacent to demonstrate their corre-
spondence:

113

Chapter 10 GRAMMARS

1 rule TOP { ^ [<object> | <array>]$ }

2 method TOP($/) { make $/.values.[0].ast }

e TOP rule has an alternation with two branches, object and array. Both have a named
capture. $/.values returns a list of all captures, here either the object or the array cap-
ture.

e action method takes the AST attached to the match object of that sub capture, and
promotes it as its own AST by calling make.

1 rule object { '{' ~ '}' <pairlist> }

2 method object($/) { make $<pairlist>.ast.hash }

e reduction method for object extracts the AST of the pairlist submatch and turns it
into a hash by calling its hash method.

1 rule pairlist { [<pair> ** [\,]]? }

2 method pairlist($/) { make $<pair>».ast; }

e pairlist rule matches multiple comma-separated pairs. e reduction method calls
the .ast method on each matched pair and installs the result list in its own AST.

1 rule pair { <string> ':' <value> }

2 method pair($/) { make $<string>.ast => $<value>.ast }

A pair consists of a string key and a value, so the action method constructs a Perl 6 pair
with the => operator.

e other action methods work the same way. ey transform the information they extract
from the match object into native Perl 6 data structures, and call make to set those native
structures as their own ASTs.

e actionmethods for proto tokens include the full name of each individual rule, including
them sym part:

1 token value:sym<null> { <sym> };

2 method value:sym<null>($/) { make Any }

114

3

4 token value:sym<object> { <object> };

5 method value:sym<object>($/) { make $<object>.ast }

When a <value> call matches, the action method with the same symbol as the matching
subrule executes.

115

11
Built-in types, operators and methods

Many operatorswork on a particular type of data. If the type of the operands differs from the
type of the operand, Perl will make copies of the operands and convert them to the needed
types. For example, $a + $b will convert a copy of both $a and $b to numbers (unless they
are numbers already). is implicit conversion is called coercion.

Besides operators, other syntactic elements coerce their elements: if and while coerce to
truth values (Bool), for views things as lists, and so on.

11.1 Numbers

Sometimes coercion is transparent. Perl 6 has several numeric types which can intermix
freely–such as subtracting a floating point value from an integer, as 123 - 12.1e1.

e most important types are:

Int

117

Chapter 11 BUILT-IN TYPES, OPERATORS AND METHODS

Int objects store integer numbers of arbitrary size. If you write a literal that consists
only of digits, such as 12, it is an Int.

Num

Num is the floating point type. It stores sign, mantissa, and exponent, each with a fixed
width. Calculations involving Num numbers are usually quite fast, though subject to
limited precision.

Numbers in scientific notation such as 6.022e23 are of type Num.

Rat

Rat, short for rational, stores fractional numbers without loss of precision. It does so
by tracking its numerator and denominator as integers, so mathematical operations
on Rats with large components can become quite slow. For this reason, rationals with
large denominators automatically degrade to Num.

Writing a fractional value with a dot as the decimal separator, such as 3.14, produces
a Rat.

Complex

Complex numbers have two parts: a real part and an imaginary part. If either part is
NaN, then the entire number may possibly be NaN.

Numbers in the form a + bi, where bi is the imaginary component, are of type
Complex.

e following operators are available for all number types:

Most mathematical functions are available both asmethods and functions, so you can write
both (-5).abs and abs(-5).

e trigonometric functions sin, cos, tan, asin, acos, atan, sec, cosec, cotan, asec, acosec,
acotan, sinh, cosh, tanh, asinh, acosh, atanh, sech, cosech, cotanh, asech, acosech and
acotanh work in units of radians by default. You may specify the unit with an argument of
Degrees, Gradians or Circles. For example, 180.sin(Degrees) is approximately 0.

118

Table 11.1: Binary numeric operators

Operator Description
** Exponentiation: $a**$b is $a to the power of $b
* multiplication
/ division
div integer division
+ addition
- subtraction

Table 11.2: Unary numeric operators

Operator Description
+ conversion to number
- negation

Table 11.3: Mathematical functions and methods

Method Description
abs absolute value
sqrt square root
log natural logarithm
log10 logarithm to base 10
ceil rounding up to an integer
floor rounding down to an integer
round rounding to next integer
sign -1 for negative, 0 for zero, 1 for positive values

11.2 Strings

Strings stored as Str are sequences of characters, independent of character encoding. e
Buf type is available for storing binary data. e encode method converts a Str to Buf.
decode goes the other direction.

119

Chapter 11 BUILT-IN TYPES, OPERATORS AND METHODS

e following operations are available for strings:

Table 11.4: Binary string operators

Operator Description
~ concatenation: 'a' ~'b' is 'ab'
x replication: 'a' x 2 is 'aa'

Table 11.5: Unary string operators

Operator Description
~ conversion to string: ~1 becomes '1'

Table 11.6: String methods/functions

Method/function Description
.chomp remove trailing newline
.substr($start,

$length)

extract a part of the string. $length defaults to the rest of the
string

.chars number of characters in the string

.uc upper case

.lc lower case

.ucfirst convert first character to upper case

.lcfirst convert first character to lower case

.capitalize convert the first character of each word to upper case, and all
other characters to lower case

120

11.3 Bool

A Boolean value is either True or False. Any value can coerce to a boolean in boolean
context. e rules for deciding if a value is true or false depend on the type of the value:

Strings

Empty strings and "0" evaluate to False. All other strings evaluate to True.

Numbers

All numbers except zero evaluate to True.

Lists and Hashes

Container types such as lists and hashes evaluate to False if they are empty, and to
True if they contain at least one value.

Constructs such as if automatically evaluate their conditions in boolean context. You can
force an explicit boolean context by putting a ? in front of an expression. e ! prefix
negates the boolean value.

1 my $num = 5;

2

3 # implicit boolean context

4 if $num { say "True" }

5

6 # explicit boolean context

7 my $bool = ?$num;

8

9 # negated boolean context

10 my $not_num = !$num;

121

Index

!, 22
!=, 23
!eq, 23
+=, 10
.* method calls, 83
.+ method calls, 83
.., 94
.? method calls, 83
.defined, 52
.sort, 24
<, 22
<=, 22
<=>, 23
===, 20
=>, 10
>, 22
>=, 22
$/, 93
~~, 24

operator, fat arrow, 16

abstract syntax tree, 113
accessor methods, 54
action methods, 112
anonymous subroutines, 28
Any, 10
arguments, 27

arity, 73
array, 7
assignment, 7, 16
AST, 113
attributes, 53
autovivification, 10

behavior, 52
bless, 56
block, 7, 8, 10
Bool, 121
Buf, 119
but, 85

calling sets, 83
callsame, 75
callwith, 75
candidates, 66
Capture, 42
captures, 42
class, 52
classes, 52
classes, accessors, 54
classes, attributes, 53
classes, behavior, 52
classes, encapsulation, 53
classes, has, 52
classes, methods, 54

123

Appendix INDEX

cmp, 23
coercion, 117
Complex, 118
composition, 80
composition, conflicts, 81
composition, methods, 81
composition, multi methods, 82
composition, resolution, 81
constraint, 41
constraint, type, 41
constraints, 67
constructors, 56

defined, 52
does, 81, 85
double-quoted strings, 11

encapsulation, 53
eq, 23
eqv, 22

fat arrow, 10
file handle, 7
files, handle, 7
first-class subroutines, 28
flattening composition, 80
for, 8
functions, arity, 73
functions, protos, 74
functions, substr, 73

goal matching, 109

has, 52
hash, 8

identifier, 7
implicit constraints, 72
index, 92, 104
infix, 16

Int, 117
interpolation, 11
invocant, 7, 55

JSON, 65

leg, 23
lexical, 7

Match, 103
match object, 93
Match, access as a hash, 104
Match.caps, 104
Match.chunks, 105
Match.from, 103
Match.orig, 103
Match.to, 103
meta operator, [], 18
meta operator, reduction, 18
method, 7
methods, 54
multidispatch, 65
multidispatch, constraints, 67
multidispatch, narrowness, 69
multis, 65

named captures, 104
ne, 23
nominal type, 41, 67
Num, 118

objects, bless, 56
operator, 15
operator precedence, 19
operator, !, 22
operator, !=, 23
operator, !eq, 23
operator, <, 22
operator, <=, 22
operator, <=>, 23

124

operator, =, 16
operator, ===, 20
operator, >, 22
operator, >=, 22
operator, assignment, 16
operator, cmp, 23
operator, eq, 23
operator, eqv, 22
operator, infix operators, 16
operator, leg, 23
operator, max, 17
operator, ne, 23
operator, postcircumfix, 17
operator, postfix, 17
operator, x, 19
operator,=>, 16
operators, +=, 10
operators, ., 55
operators, m//, 101
operators, postincrement, 10
operators, preincrement, 10
operators, print, 11
operators, rx//, 101
operators, say, 11
operators, trigonometry, 118

pair, 10, 16
parameter, 30
parameter type constraint, 41
parameters, anonymous, 71
pattern matching, 91
PCRE, 91
POSIX, 91
postcircumfix, 17
postfix, 17
postincrement, 10
precedence, 19
precedence, rules, 19
preincrement, 10

print, 11
printf, 19
proto token, 109
protos, 74

Rakudo, 3
Rat, 118
rational type, 118
reduction methods, 112
regex, 91
regex meta character,~, 109
regex, \D, 93
regex, \d, 93
regex, \H, 93
regex, \h, 93
regex, \N, 93
regex, \n, 93
regex, \S, 93
regex, \s, 93
regex, \T, 93
regex, \t, 93
regex, \V, 93
regex, \v, 93
regex, \W, 93
regex, \w, 93
regex, * quantifier, 95
regex, ** quantifier, 95
regex, + quantifier, 95
regex, . character, 92
regex, :, 100
regex, :g, 101
regex, :i, 100
regex, :ignorecase modifier, 100
regex, :ratchet, 100
regex, :s modifier, 99
regex, :sigspace modifier, 99
regex, ? quantifier, 94
regex, $, 96
regex, $/, 97

125

Appendix INDEX

regex, $$, 96
regex, ^, 96
regex, ^^, 96
regex, alternation, 96
regex, anchors, 96
regex, avoid captures, 102
regex, backreference, 98
regex, backtracking, 100
regex, captures, 97
regex, character class addition, 94
regex, character class subtraction, 94
regex, character classes, 93
regex, character range, 94
regex, custom character classes, 93
regex, disable backtracking, 100
regex, global substitution, 101
regex, greedy matching, 95
regex, grouping, 96
regex, line end anchor, 96
regex, line start anchor, 96
regex, lookahead, 102
regex, lookbehind, 102
regex, Match object, 103
regex, metasyntactic characters, 92
regex, modifiers, 99
regex, named, 98
regex, named captures, 104
regex, negative look-ahead assertion, 102
regex, non-greedy matching, 95
regex, quantified capture, 97
regex, quantifier, 94
regex, rule, 101
regex, special characters, 92
regex, string end anchor, 96
regex, string start anchor, 96
regex, subrule, 99
regex, token, 101
regex, zero-width assertion, 102

regular expressions, 91
repetition operator, 19
required methods, 83
return, 39
return value, 27
return, implicit, 40
rindex, 92, 104
role, 77
roles, 77
roles, parametric, 80
roles, requirements, 83
roles, runtime application, 84
rule, 101

say, 11
scalar, 7
scoping, subroutines, 28
sigil, 7
sigils, &, 53
signature, 27
signature unpacking, 45
signatures, subroutines, 30
single-quoted strings, 11
slurpy, 38
smart match, 24
sort, stable, 11
stable sort, 11
state, 52
statement, 7
Str, 119
string, 7
string literal, 7
strings, 119
strings, double-quoted, 11
strings, literal, 7
strings, single-quoted, 11
subroutine, 27
subroutines, anonymous, 28
subroutines, declaration, 27

126

subroutines, first-class, 28
subroutines, scoping, 28
subroutines, signature, 30
subrule, 99
subset type, 67
subsignature, 45
subst, 101
substitutions, 101
substr, 73

term, 16
token, 101
topic, 10
topic variable, 10
traits, implicit constraints, 72
traits, is rw, 54
trigonometric functions, 118
twigils, 53
twigils, !, 53
twigils, ., 54
twigils, accessors, 54
type, 117
type capture, 71
type object, 52
type; nominal, 41
types, Bool, 121
types, Buf, 119
types, capture, 71
types, Complex, 118
types, constraints, 67
types, Int, 117
types, nominal, 67
types, Num, 118
types, Rat, 118
types, rational, 118
types, Str, 119
types, subset, 67

units, 118

unpacking, 45

v6, 6
value identity, 20
variable, scalar, 7
variables, $, 10
variables, lexical, 7

where, 41

Zen slice, 12

127

	Preface
	Audience
	Format of this book
	Relationship between Perl 6 and Perl 5
	Perl 6 implementations
	Installing Rakudo
	Executing programs
	Getting involved

	The Basics
	Exercises

	Operators
	A Word on Precedence
	Comparisons and Smart Matching
	Numeric Comparisons
	String Comparisons
	Smart Matching

	Subs and Signatures
	Declaring A Subroutine
	Adding Signatures
	The Basics
	Passing Arrays, Hashes and Code
	Interpolating Arrays and Hashes
	Optional Parameters
	Named Arguments and Parameters
	Slurpy Parameters

	Returning Results
	Working With Types
	Basic Types
	Adding Constraints

	Captures
	Creating And Using A Capture
	Captures In Signatures

	Unpacking
	Currying
	Introspection

	Classes and Objects
	Starting with class
	I can has state?
	Methods
	Constructors
	Consuming our class
	Inheritance
	Overriding Inherited Methods
	Multiple Inheritance

	Introspection
	Exercises

	Multis
	Constraints
	Narrowness
	Multiple arguments
	Bindability checks
	Nested Signatures in Multi-dispatch
	Protos
	Toying with the candidate list

	Roles
	What is a role?
	Compile Time Composition
	Multi-methods and composition
	Calling all candidates
	Expressing requirements

	Runtime Application of Roles
	Differences from compile time composition
	The but operator

	Parametric Roles
	Roles and Types

	Subtypes
	Pattern matching
	Anchors
	Captures
	Named regexes
	Modifiers
	Backtracking control
	Substitutions
	Other Regex Features
	Match objects

	Grammars
	Grammar Inheritance
	Extracting data

	Built-in types, operators and methods
	Numbers
	Strings
	Bool

